magail4autodrive: first commit

This commit is contained in:
ZHY
2025-09-28 18:57:04 +08:00
commit 947871a720
90 changed files with 1037 additions and 0 deletions

108
Algorithm/utils.py Normal file
View File

@@ -0,0 +1,108 @@
import math
import torch
import numpy as np
from torch import nn
from typing import Tuple
class RunningMeanStd(object):
def __init__(self, epsilon: float = 1e-4, shape: Tuple[int, ...] = ()):
"""
Calulates the running mean and std of a data stream
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm
:param epsilon: helps with arithmetic issues
:param shape: the shape of the data stream's output
"""
self.mean = np.zeros(shape, np.float64)
self.var = np.ones(shape, np.float64)
self.count = epsilon
def update(self, arr: np.ndarray) -> None:
batch_mean = np.mean(arr, axis=0)
batch_var = np.var(arr, axis=0)
batch_count = arr.shape[0]
self.update_from_moments(batch_mean, batch_var, batch_count)
def update_from_moments(self, batch_mean: np.ndarray, batch_var: np.ndarray, batch_count: int) -> None:
delta = batch_mean - self.mean
tot_count = self.count + batch_count
new_mean = self.mean + delta * batch_count / tot_count
m_a = self.var * self.count
m_b = batch_var * batch_count
m_2 = m_a + m_b + np.square(delta) * self.count * batch_count / (self.count + batch_count)
new_var = m_2 / (self.count + batch_count)
new_count = batch_count + self.count
self.mean = new_mean
self.var = new_var
self.count = new_count
class Normalizer(RunningMeanStd):
def __init__(self, input_dim, epsilon=1e-4, clip_obs=10.0):
super().__init__(shape=input_dim)
self.epsilon = epsilon
self.clip_obs = clip_obs
def normalize(self, input):
return np.clip(
(input - self.mean) / np.sqrt(self.var + self.epsilon),
-self.clip_obs, self.clip_obs)
def normalize_torch(self, input, device):
mean_torch = torch.tensor(
self.mean, device=device, dtype=torch.float32)
std_torch = torch.sqrt(torch.tensor(
self.var + self.epsilon, device=device, dtype=torch.float32))
return torch.clamp(
(input - mean_torch) / std_torch, -self.clip_obs, self.clip_obs)
def update_normalizer(self, rollouts, expert_loader):
policy_data_generator = rollouts.feed_forward_generator_amp(
None, mini_batch_size=expert_loader.batch_size)
expert_data_generator = expert_loader.dataset.feed_forward_generator_amp(
expert_loader.batch_size)
for expert_batch, policy_batch in zip(expert_data_generator, policy_data_generator):
self.update(
torch.vstack(tuple(policy_batch) + tuple(expert_batch)).cpu().numpy())
def build_mlp(input_dim, output_dim, hidden_units=[64, 64],
hidden_activation=nn.Tanh(), output_activation=None):
layers = []
units = input_dim
for next_units in hidden_units:
layers.append(nn.Linear(units, next_units))
layers.append(hidden_activation)
units = next_units
layers.append(nn.Linear(units, output_dim))
if output_activation is not None:
layers.append(output_activation)
return nn.Sequential(*layers)
def calculate_log_pi(log_stds, noises, actions):
gaussian_log_probs = (-0.5 * noises.pow(2) - log_stds).sum(
dim=-1, keepdim=True) - 0.5 * math.log(2 * math.pi) * log_stds.size(-1)
return gaussian_log_probs - torch.log(
1 - actions.pow(2) + 1e-6).sum(dim=-1, keepdim=True)
def reparameterize(means, log_stds):
noises = torch.randn_like(means)
us = means + noises * log_stds.exp()
actions = torch.tanh(us)
return actions, calculate_log_pi(log_stds, noises, actions)
def atanh(x):
return 0.5 * (torch.log(1 + x + 1e-6) - torch.log(1 - x + 1e-6))
def evaluate_lop_pi(means, log_stds, actions):
noises = (atanh(actions) - means) / (log_stds.exp() + 1e-8)
return calculate_log_pi(log_stds, noises, actions)