新增scripts工具

This commit is contained in:
2025-10-25 21:44:11 +08:00
parent 62e638c4d2
commit c94571ddaa
17 changed files with 1193 additions and 66 deletions

0
scripts/__init__.py Normal file
View File

View File

@@ -0,0 +1,256 @@
import sys
import os
# 添加路径
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(current_dir)
env_dir = os.path.join(project_root, "Env")
sys.path.insert(0, project_root)
sys.path.insert(0, env_dir)
import numpy as np
import matplotlib.pyplot as plt
from collections import defaultdict
from scenario_env import MultiAgentScenarioEnv
from metadrive.engine.asset_loader import AssetLoader
import pickle
import os
class DummyPolicy:
"""占位策略"""
def act(self, *args, **kwargs):
return np.array([0.0, 0.0])
class ExpertDataAnalyzer:
def __init__(self, data_directory):
self.data_directory = data_directory
self.env = MultiAgentScenarioEnv(
config={
"data_directory": data_directory,
"is_multi_agent": True,
"num_controlled_agents": 3,
"use_render": False,
"sequential_seed": True,
},
agent2policy=DummyPolicy() # 添加必需参数
)
self.statistics = {
"num_scenarios": 0,
"num_trajectories": 0,
"trajectory_lengths": [],
"velocities": [],
"speeds": [], # 速度大小
"accelerations": [],
"heading_changes": [],
"inter_vehicle_distances": [],
"num_vehicles_per_scenario": [],
"static_vehicles": 0, # 统计静止车辆
}
def analyze_all_scenarios(self, num_scenarios=None):
"""遍历所有场景并收集统计信息"""
scenario_count = 0
while True:
try:
obs = self.env.reset()
if not hasattr(self.env, 'expert_trajectories'):
print("⚠️ 环境缺少expert_trajectories属性")
break
expert_trajs = self.env.expert_trajectories
if len(expert_trajs) == 0:
continue
scenario_count += 1
self.statistics["num_scenarios"] += 1
self.statistics["num_vehicles_per_scenario"].append(len(expert_trajs))
# 分析每条轨迹
for obj_id, traj in expert_trajs.items():
self.analyze_single_trajectory(traj)
# 分析车辆间交互
self.analyze_vehicle_interactions(expert_trajs)
print(f"已分析场景 {scenario_count}/{num_scenarios}, 车辆数: {len(expert_trajs)}")
if num_scenarios and scenario_count >= num_scenarios:
break
except Exception as e:
print(f"场景 {scenario_count} 处理失败: {e}")
break
self.env.close()
def analyze_single_trajectory(self, traj):
"""分析单条轨迹"""
self.statistics["num_trajectories"] += 1
length = traj["length"]
self.statistics["trajectory_lengths"].append(length)
# 速度分析
velocities = traj["velocities"]
speeds = np.linalg.norm(velocities, axis=1)
self.statistics["velocities"].extend(velocities.tolist())
self.statistics["speeds"].extend(speeds.tolist())
# 检查是否为静止车辆
if np.max(speeds) < 0.5: # 最大速度小于0.5m/s视为静止
self.statistics["static_vehicles"] += 1
# 加速度分析
if length > 1:
accelerations = np.diff(speeds) * 10 # 10Hz数据
self.statistics["accelerations"].extend(accelerations.tolist())
# 航向角变化
headings = traj["headings"]
if length > 1:
heading_changes = np.diff(headings)
heading_changes = np.arctan2(np.sin(heading_changes), np.cos(heading_changes))
self.statistics["heading_changes"].extend(heading_changes.tolist())
def analyze_vehicle_interactions(self, expert_trajs):
"""分析车辆间的距离"""
if len(expert_trajs) < 2:
return
traj_list = list(expert_trajs.values())
for i in range(len(traj_list)):
for j in range(i+1, len(traj_list)):
traj_i = traj_list[i]
traj_j = traj_list[j]
start_time = max(traj_i["start_timestep"], traj_j["start_timestep"])
end_time = min(traj_i["end_timestep"], traj_j["end_timestep"])
if start_time >= end_time:
continue
idx_i_start = start_time - traj_i["start_timestep"]
idx_i_end = end_time - traj_i["start_timestep"]
idx_j_start = start_time - traj_j["start_timestep"]
idx_j_end = end_time - traj_j["start_timestep"]
pos_i = traj_i["positions"][idx_i_start:idx_i_end, :2]
pos_j = traj_j["positions"][idx_j_start:idx_j_end, :2]
distances = np.linalg.norm(pos_i - pos_j, axis=1)
self.statistics["inter_vehicle_distances"].extend(distances.tolist())
def generate_report(self, save_dir="./analysis_results"):
"""生成统计报告"""
os.makedirs(save_dir, exist_ok=True)
stats = self.statistics
print("\n" + "="*60)
print("专家数据集统计报告")
print("="*60)
print(f"总场景数: {stats['num_scenarios']}")
print(f"总轨迹数: {stats['num_trajectories']}")
print(f"静止车辆数: {stats['static_vehicles']} ({stats['static_vehicles']/stats['num_trajectories']*100:.1f}%)")
print(f"平均每场景车辆数: {np.mean(stats['num_vehicles_per_scenario']):.2f} ± {np.std(stats['num_vehicles_per_scenario']):.2f}")
print(f"\n轨迹长度统计 (帧数 @ 10Hz):")
print(f" 平均: {np.mean(stats['trajectory_lengths']):.2f} 帧 ({np.mean(stats['trajectory_lengths'])*0.1:.2f}秒)")
print(f" 中位数: {np.median(stats['trajectory_lengths']):.2f}")
print(f" 最小/最大: {np.min(stats['trajectory_lengths'])} / {np.max(stats['trajectory_lengths'])}")
print(f"\n速度统计 (m/s):")
speeds = np.array(stats['speeds'])
print(f" 平均: {np.mean(speeds):.2f} ± {np.std(speeds):.2f}")
print(f" 中位数: {np.median(speeds):.2f}")
print(f" 最小/最大: {np.min(speeds):.2f} / {np.max(speeds):.2f}")
print(f" 静止帧(<0.5m/s): {np.sum(speeds < 0.5)} ({np.sum(speeds < 0.5)/len(speeds)*100:.1f}%)")
print(f"\n加速度统计 (m/s²):")
accs = np.array(stats['accelerations'])
print(f" 平均: {np.mean(accs):.4f} ± {np.std(accs):.2f}")
print(f" 最小/最大: {np.min(accs):.2f} / {np.max(accs):.2f}")
if len(stats['inter_vehicle_distances']) > 0:
dists = np.array(stats['inter_vehicle_distances'])
print(f"\n车辆间距离统计 (m):")
print(f" 平均: {np.mean(dists):.2f} ± {np.std(dists):.2f}")
print(f" 最小: {np.min(dists):.2f}")
print(f" 近距离交互(<5m): {np.sum(dists < 5.0)} ({np.sum(dists < 5.0)/len(dists)*100:.2f}%)")
# 保存数据
with open(os.path.join(save_dir, "statistics.pkl"), "wb") as f:
pickle.dump(stats, f)
# 绘制可视化
self.plot_distributions(save_dir)
print(f"\n✓ 报告已保存到: {save_dir}")
def plot_distributions(self, save_dir):
"""绘制分布图"""
stats = self.statistics
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
# 1. 轨迹长度分布
axes[0, 0].hist(stats['trajectory_lengths'], bins=50, edgecolor='black')
axes[0, 0].set_xlabel('Trajectory Length (frames @ 10Hz)')
axes[0, 0].set_ylabel('Frequency')
axes[0, 0].set_title('Trajectory Length Distribution')
axes[0, 0].axvline(np.mean(stats['trajectory_lengths']), color='red',
linestyle='--', label=f'Mean: {np.mean(stats["trajectory_lengths"]):.1f}')
axes[0, 0].legend()
# 2. 速度分布
axes[0, 1].hist(stats['speeds'], bins=50, edgecolor='black')
axes[0, 1].set_xlabel('Speed (m/s)')
axes[0, 1].set_ylabel('Frequency')
axes[0, 1].set_title('Speed Distribution')
axes[0, 1].axvline(np.mean(stats['speeds']), color='red',
linestyle='--', label=f'Mean: {np.mean(stats["speeds"]):.2f}')
axes[0, 1].legend()
# 3. 加速度分布
axes[0, 2].hist(stats['accelerations'], bins=50, edgecolor='black')
axes[0, 2].set_xlabel('Acceleration (m/s²)')
axes[0, 2].set_ylabel('Frequency')
axes[0, 2].set_title('Acceleration Distribution')
# 4. 每场景车辆数
axes[1, 0].hist(stats['num_vehicles_per_scenario'], bins=30, edgecolor='black')
axes[1, 0].set_xlabel('Vehicles per Scenario')
axes[1, 0].set_ylabel('Frequency')
axes[1, 0].set_title('Vehicles per Scenario')
# 5. 航向角变化
axes[1, 1].hist(stats['heading_changes'], bins=50, edgecolor='black')
axes[1, 1].set_xlabel('Heading Change (rad)')
axes[1, 1].set_ylabel('Frequency')
axes[1, 1].set_title('Heading Change Distribution')
# 6. 车辆间距离
if len(stats['inter_vehicle_distances']) > 0:
axes[1, 2].hist(stats['inter_vehicle_distances'], bins=50,
range=(0, 50), edgecolor='black')
axes[1, 2].set_xlabel('Inter-vehicle Distance (m)')
axes[1, 2].set_ylabel('Frequency')
axes[1, 2].set_title('Distance Distribution')
plt.tight_layout()
plt.savefig(os.path.join(save_dir, "distributions.png"), dpi=300)
print(f" ✓ 分布图已保存")
if __name__ == "__main__":
WAYMO_DATA_DIR = r"/home/huangfukk/mdsn"
data_dir = AssetLoader.file_path(WAYMO_DATA_DIR, "exp_filtered", unix_style=False)
print("开始分析专家数据...")
analyzer = ExpertDataAnalyzer(data_dir)
analyzer.analyze_all_scenarios(num_scenarios=100) # 分析100个场景
analyzer.generate_report()

View File

@@ -0,0 +1,47 @@
import pickle
import os
# 检查过滤后的数据库
filtered_db = "/home/huangfukk/mdsn/exp_filtered"
print("="*60)
print("过滤后数据库信息")
print("="*60)
# 读取summary
summary_path = os.path.join(filtered_db, "dataset_summary.pkl")
with open(summary_path, 'rb') as f:
summary = pickle.load(f)
print(f"\n总场景数: {len(summary)}")
print(f"场景ID列表(前10个): {list(summary.keys())[:10]}")
# 读取mapping
mapping_path = os.path.join(filtered_db, "dataset_mapping.pkl")
with open(mapping_path, 'rb') as f:
mapping = pickle.load(f)
print(f"\n映射关系数量: {len(mapping)}")
# 检查第一个场景的详细信息
first_scenario_id = list(summary.keys())[0]
first_scenario_info = summary[first_scenario_id]
print(f"\n第一个场景详细信息:")
print(f" 场景ID: {first_scenario_id}")
print(f" 元数据: {first_scenario_info}")
# 检查映射的文件路径
first_scenario_path = mapping[first_scenario_id]
print(f" 场景文件路径(相对): {first_scenario_path}")
# 检查文件是否存在
abs_path = os.path.join(filtered_db, first_scenario_path)
print(f" 场景文件路径(绝对): {abs_path}")
print(f" 文件存在: {os.path.exists(abs_path)}")
# 统计源数据库的场景文件
converted_db = "/home/huangfukk/mdsn/exp_converted"
converted_files = [f for f in os.listdir(converted_db) if f.endswith('.pkl') and f.startswith('sd_')]
print(f"\n源数据库 exp_converted:")
print(f" 场景文件数量: {len(converted_files)}")
print(f" 示例文件: {converted_files[:5]}")

View File

@@ -0,0 +1,177 @@
import sys
import os
# 添加路径
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(current_dir)
env_dir = os.path.join(project_root, "Env")
sys.path.insert(0, project_root)
sys.path.insert(0, env_dir)
from scenario_env import MultiAgentScenarioEnv
from metadrive.engine.asset_loader import AssetLoader
import numpy as np
class DummyPolicy:
"""
占位策略,用于数据检查时初始化环境
不需要实际执行动作,只是为了满足环境初始化要求
"""
def act(self, *args, **kwargs):
# 返回零动作 [throttle, steering]
return np.array([0.0, 0.0])
def check_available_fields():
"""
检查Waymo转MetaDrive数据中实际可用的字段
"""
WAYMO_DATA_DIR = r"/home/huangfukk/mdsn"
data_dir = AssetLoader.file_path(WAYMO_DATA_DIR, "exp_filtered", unix_style=False)
# 创建占位策略
dummy_policy = DummyPolicy()
# 初始化环境,传入必需的agent2policy参数
env = MultiAgentScenarioEnv(
config={
"data_directory": data_dir,
"is_multi_agent": True,
"num_controlled_agents": 3,
"use_render": False,
"sequential_seed": True,
},
agent2policy=dummy_policy # 添加这个必需参数
)
print("✓ 环境初始化成功")
# 重置环境以加载数据
print("正在加载场景数据...")
env.reset()
# 检查是否有expert_trajectories属性
if hasattr(env, 'expert_trajectories'):
print(f"✓ expert_trajectories属性存在,包含 {len(env.expert_trajectories)} 条轨迹")
else:
print("⚠️ expert_trajectories属性不存在,请先修改scenario_env.py添加轨迹存储功能")
# 获取一个track样本
sample_track = None
for scenario_id, track in env.engine.traffic_manager.current_traffic_data.items():
if track["type"] == "VEHICLE":
sample_track = track
print(f"\n找到样本车辆: scenario_id = {scenario_id}")
break
if sample_track is None:
print("未找到车辆轨迹数据")
env.close()
return
print("="*60)
print("Track数据结构分析")
print("="*60)
# 1. 顶层字段
print("\n1. Track顶层字段:")
for key in sample_track.keys():
print(f" - {key}: {type(sample_track[key])}")
# 2. metadata字段
print("\n2. track['metadata']字段:")
if "metadata" in sample_track:
for key, value in sample_track["metadata"].items():
if isinstance(value, (str, int, float, bool)):
print(f" - {key}: {type(value).__name__} = {value}")
else:
print(f" - {key}: {type(value).__name__}")
# 3. state字段
print("\n3. track['state']字段:")
if "state" in sample_track:
for key, value in sample_track["state"].items():
if isinstance(value, np.ndarray):
print(f" - {key}: shape={value.shape}, dtype={value.dtype}")
# 打印第一个有效值
if "valid" in sample_track["state"]:
valid_idx = np.argmax(sample_track["state"]["valid"])
if valid_idx >= 0 and valid_idx < len(value):
print(f" 示例值 (index {valid_idx}): {value[valid_idx]}")
else:
print(f" - {key}: {type(value)} = {value}")
print("\n" + "="*60)
print("建议存储的字段:")
print("="*60)
# 检查必需字段
required_fields = ["position", "heading", "velocity", "valid"]
print("\n必需字段:")
all_required_exist = True
for field in required_fields:
if "state" in sample_track and field in sample_track["state"]:
print(f"{field} (存在)")
else:
print(f"{field} (缺失)")
all_required_exist = False
# 检查可选字段
optional_fields = ["length", "width", "height", "bbox"]
print("\n可选字段:")
available_optional = []
for field in optional_fields:
if "state" in sample_track and field in sample_track["state"]:
print(f" + {field} (在state中)")
available_optional.append(field)
elif "metadata" in sample_track and field in sample_track["metadata"]:
print(f" + {field} (在metadata中)")
available_optional.append(field)
else:
print(f" - {field} (不存在)")
print("\n" + "="*60)
print("推荐的trajectory_data结构:")
print("="*60)
if all_required_exist:
print("""
trajectory_data = {
"object_id": object_id,
"scenario_id": scenario_id,
"valid_mask": valid[first_show:last_show+1].copy(),
"positions": track["state"]["position"][first_show:last_show+1].copy(),
"headings": track["state"]["heading"][first_show:last_show+1].copy(),
"velocities": track["state"]["velocity"][first_show:last_show+1].copy(),
"timesteps": np.arange(first_show, last_show+1),
"start_timestep": first_show,
"end_timestep": last_show,
"length": last_show - first_show + 1
}
""")
if available_optional:
print("如果需要车辆尺寸,可选添加:")
for field in available_optional:
if field in ["length", "width", "height"]:
print(f' trajectory_data["vehicle_{field}"] = track["state" or "metadata"]["{field}"][first_show]')
else:
print("⚠️ 缺少必需字段,请检查数据转换流程")
# 如果有expert_trajectories,展示一个样本
if hasattr(env, 'expert_trajectories') and len(env.expert_trajectories) > 0:
print("\n" + "="*60)
print("expert_trajectories样本:")
print("="*60)
sample_traj = list(env.expert_trajectories.values())[0]
for key, value in sample_traj.items():
if isinstance(value, np.ndarray):
print(f" {key}: shape={value.shape}, dtype={value.dtype}")
else:
print(f" {key}: {type(value).__name__} = {value}")
env.close()
print("\n✓ 分析完成")
if __name__ == "__main__":
check_available_fields()

View File

@@ -0,0 +1,105 @@
import sys
import os
# 添加路径
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(current_dir)
env_dir = os.path.join(project_root, "Env")
sys.path.insert(0, project_root)
sys.path.insert(0, env_dir)
# 现在可以导入了
from scenario_env import MultiAgentScenarioEnv
from metadrive.engine.asset_loader import AssetLoader
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
class DummyPolicy:
"""
占位策略,用于数据检查时初始化环境
不需要实际执行动作,只是为了满足环境初始化要求
"""
def act(self, *args, **kwargs):
# 返回零动作 [throttle, steering]
return np.array([0.0, 0.0])
def visualize_expert_trajectory(env, scenario_idx=0):
"""
可视化专家轨迹的俯视图动画
"""
env.reset()
expert_trajs = env.expert_trajectories
if len(expert_trajs) == 0:
print("当前场景无专家轨迹")
return
# 设置绘图
fig, ax = plt.subplots(figsize=(12, 12))
# 获取所有轨迹的最大时间长度
max_timestep = max(traj["end_timestep"] for traj in expert_trajs.values())
min_timestep = min(traj["start_timestep"] for traj in expert_trajs.values())
# 绘制完整轨迹(淡色)
colors = plt.cm.tab10(np.linspace(0, 1, len(expert_trajs)))
for idx, (obj_id, traj) in enumerate(expert_trajs.items()):
positions = traj["positions"][:, :2]
ax.plot(positions[:, 0], positions[:, 1],
color=colors[idx], alpha=0.3, linewidth=1,
label=f'Vehicle {obj_id[:6]}')
# 初始化当前位置标记
scatter = ax.scatter([], [], s=200, c='red', marker='o', edgecolors='black', linewidths=2)
time_text = ax.text(0.02, 0.95, '', transform=ax.transAxes, fontsize=14)
ax.set_xlabel('X (m)')
ax.set_ylabel('Y (m)')
ax.set_title(f'Expert Trajectory Visualization - Scenario {scenario_idx}')
ax.legend(loc='upper right', fontsize=8)
ax.grid(True, alpha=0.3)
ax.axis('equal')
def update(frame):
current_time = min_timestep + frame
# 收集当前时间所有车辆的位置
current_positions = []
for traj in expert_trajs.values():
if traj["start_timestep"] <= current_time <= traj["end_timestep"]:
idx = current_time - traj["start_timestep"]
pos = traj["positions"][idx, :2]
current_positions.append(pos)
if len(current_positions) > 0:
current_positions = np.array(current_positions)
scatter.set_offsets(current_positions)
time_text.set_text(f'Time: {frame * 0.1:.1f}s (Frame {frame})')
return scatter, time_text
anim = FuncAnimation(fig, update, frames=max_timestep-min_timestep+1,
interval=100, blit=True, repeat=True)
plt.tight_layout()
plt.show()
return anim
if __name__ == "__main__":
WAYMO_DATA_DIR = r"/home/huangfukk/mdsn"
data_dir = AssetLoader.file_path(WAYMO_DATA_DIR, "exp_filtered", unix_style=False)
env = MultiAgentScenarioEnv(
config={
"data_directory": data_dir,
"is_multi_agent": True,
"num_controlled_agents": 3,
"use_render": False,
},
agent2policy=DummyPolicy()
)
# 可视化第一个场景
anim = visualize_expert_trajectory(env, scenario_idx=0)