Files

39 lines
1.4 KiB
Python
Raw Permalink Normal View History

Add come updates for Neurips paper (#4) * scenarionet training * wandb * train utils * fix callback * run PPO * use pg test * save path * use torch * add dependency * update ignore * update training * large model * use curriculum training * add time to exp name * storage_path * restore * update training * use my key * add log message * check seed * restore callback * restore call bacl * add log message * add logging message * restore ray1.4 * length 500 * ray 100 * wandb * use tf * more levels * add callback * 10 worker * show level * no env horizon * callback result level * more call back * add diffuculty * add mroen stat * mroe stat * show levels * add callback * new * ep len 600 * fix setup * fix stepup * fix to 3.8 * update setup * parallel worker! * new exp * add callback * lateral dist * pg dataset * evaluate * modify config * align config * train single RL * update training script * 100w eval * less eval to reveal * 2000 env eval * new trianing * eval 1000 * update eval * more workers * more worker * 20 worker * dataset to database * split tool! * split dataset * try fix * train 003 * fix mapping * fix test * add waymo tqdm * utils * fix bug * fix bug * waymo * int type * 8 worker read * disable * read file * add log message * check existence * dist 0 * int * check num * suprass warning * add filter API * filter * store map false * new * ablation * filter * fix * update filyter * reanme to from * random select * add overlapping checj * fix * new training sceheme * new reward * add waymo train script * waymo different config * copy raw data * fix bug * add tqdm * update readme * waymo * pg * max lateral dist 3 * pg * crash_done instead of penalty * no crash done * gpu * update eval script * steering range penalty * evaluate * finish pg * update setup * fix bug * test * fix * add on line * train nuplan * generate sensor * udpate training * static obj * multi worker eval * filx bug * use ray for testing * eval! * filter senario * id filter * fox bug * dist = 2 * filter * eval * eval ret * ok * update training pg * test before use * store data=False * collect figures * capture pic --------- Co-authored-by: Quanyi Li <quanyi@bolei-gpu02.cs.ucla.edu>
2023-06-10 18:56:33 +01:00
"""
Procedure to use wandb:
1. Logup in wandb: https://wandb.ai/
2. Get the API key in personal setting
3. Store API key (a string)to some file as: ~/wandb_api_key_file.txt
4. Install wandb: pip install wandb
5. Fill the "wandb_key_file", "wandb_project" keys in our train function.
Note1: You don't need to specify who own "wandb_project", for example, in team "drivingforce"'s project
"representation", you only need to fill wandb_project="representation"
Note2: In wanbd, there are "team name", "project name", "group name" and "trial_name". We only need to care
"team name" and "project name". The "team name" is set to "drivingforce" by default. You can also use None to
log result to your personal domain. The "group name" of the experiment is exactly the "exp_name" in our context, like
"0304_train_ppo" or so.
Note3: It would be great to change the x-axis in wandb website to "timesteps_total".
Peng Zhenghao, 20210402
"""
from ray import tune
from scenarionet_training.train_utils.utils import train
if __name__ == "__main__":
config = dict(env="CartPole-v0", num_workers=0, lr=tune.grid_search([1e-2, 1e-4]))
train(
"PPO",
exp_name="test_wandb",
stop=10000,
config=config,
custom_callback=False,
test_mode=False,
local_mode=False,
wandb_project="TEST",
wandb_team="drivingforce" # drivingforce is set to default. Use None to log to your personal domain!
)