2023-05-05 19:20:08 +01:00
# ScenarioNet
2023-05-19 13:51:18 +01:00
2023-12-02 13:50:44 +00:00
[](https://scenarionet.readthedocs.io/en/latest/?badge=latest)
[](http://github.com/metadriverse/scenarionet/actions)
[](https://github.com/metadriverse/scenarionet/blob/main/LICENSE.txt)
2023-10-18 14:32:01 -07:00
**Open-Source Platform for Large-Scale Traffic Scenario Simulation and Modeling**
2023-06-17 17:19:40 +01:00
2023-08-26 22:29:54 +01:00
[
2023-06-22 12:17:20 +01:00
[**Webpage** ](https://metadriverse.github.io/scenarionet/ ) |
2023-06-17 17:19:40 +01:00
[**Code** ](https://github.com/metadriverse/scenarionet ) |
2023-06-23 19:50:40 +01:00
[**Video** ](https://youtu.be/3bOqswXP6OA ) |
2023-06-22 12:17:20 +01:00
[**Paper** ](http://arxiv.org/abs/2306.12241 ) |
2023-10-18 14:32:01 -07:00
[**Documentation** ](https://scenarionet.readthedocs.io/en/latest/ )
2023-08-26 22:29:54 +01:00
]
2023-06-17 17:19:40 +01:00
2023-10-18 14:32:01 -07:00
***Colab example for running simulation with ScenarioNet:***
[](https://colab.research.google.com/github/metadriverse/scenarionet/blob/main/tutorial/simulation.ipynb)
***Colab example for reading established ScenarioNet dataset:***
[](https://colab.research.google.com/github/metadriverse/scenarionet/blob/main/tutorial/read_established_scenarionet_dataset.ipynb)
ScenarioNet allows users to load scenarios from real-world datasets like Waymo, nuPlan,
nuScenes, l5 and synthetic dataset such as procedural generated ones and safety-critical
ones generated by adversarial attack. The built database provides tools for building
training and test sets for ML applications.
Powered by [MetaDrive Simulator ](https://github.com/metadriverse/metadrive ),
the scenarios can be reconstructed for various applications like AD stack test,
reinforcement learning, imitation learning, scenario generation and so on.
2023-06-17 17:19:40 +01:00
2023-09-12 22:28:21 +01:00

2023-06-17 17:19:40 +01:00
2023-05-19 13:51:18 +01:00
## Installation
2023-08-26 22:29:54 +01:00
The detailed installation guidance is available
at [documentation ](https://scenarionet.readthedocs.io/en/latest/install.html ).
A simplest way to do this is as follows.
2023-05-19 13:51:18 +01:00
```
2023-07-03 13:50:33 +01:00
# create environment
conda create -n scenarionet python=3.9
conda activate scenarionet
# Install MetaDrive Simulator
2023-10-18 14:32:01 -07:00
cd ~/ # Go to the folder you want to host these two repos.
git clone https://github.com/metadriverse/metadrive.git
2023-07-03 13:50:33 +01:00
cd metadrive
pip install -e.
# Install ScenarioNet
2023-10-18 14:32:01 -07:00
cd ~/ # Go to the folder you want to host these two repos.
2024-02-20 13:28:09 -08:00
git clone https://github.com/metadriverse/scenarionet.git
2023-05-19 13:51:18 +01:00
cd scenarionet
pip install -e .
```
2023-08-26 22:29:54 +01:00
## API reference
2023-06-10 18:56:33 +01:00
2023-08-26 22:29:54 +01:00
All operations and API reference is available at
our [documentation ](https://scenarionet.readthedocs.io/en/latest/operations.html ).
If you already have ScenarioNet installed, you can check all operations by `python -m scenarionet.list` .
2023-06-10 18:56:33 +01:00
2024-01-21 19:52:57 -08:00
## ScenarioNet dataset and Scenario Description
Please refer to the [Scenario Description section](https://metadrive-simulator.readthedocs.io/en/latest/scenario_description.html
) in MetaDrive documentation for a walk-through.
2023-08-26 22:29:54 +01:00
## Citation
2023-06-10 18:56:33 +01:00
2023-10-18 14:32:01 -07:00
If you used this project in your research, please cite:
2023-06-10 18:56:33 +01:00
2023-08-26 22:29:54 +01:00
```latex
@article {li2023scenarionet,
2023-10-23 07:10:04 -07:00
title={ScenarioNet: Open-Source Platform for Large-Scale Traffic Scenario Simulation and Modeling},
author={Li, Quanyi and Peng, Zhenghao and Feng, Lan and Liu, Zhizheng and Duan, Chenda and Mo, Wenjie and Zhou, Bolei},
journal={Advances in Neural Information Processing Systems},
year={2023}
2023-10-18 14:32:01 -07:00
}
2023-05-19 13:51:18 +01:00
```