add PG
This commit is contained in:
@@ -2,5 +2,20 @@
|
||||
PG
|
||||
############
|
||||
|
||||
Known Issues
|
||||
The PG scenarios are collected by running simulation and record the episodes in MetaDrive simulator.
|
||||
The name PG refers to Procedural Generation, which is a technique used to generate maps.
|
||||
When a map is determined, the vehicles and objects will be spawned and actuated according to a hand-crafted rules.
|
||||
|
||||
Build PG Database
|
||||
===================
|
||||
|
||||
If MetaDrive is installed, there is no any further steps required to build the database. Just run the following
|
||||
command to generate, i.e. 1000 scenarios::
|
||||
|
||||
python -m scenarionet.convert_pg -d /path/to/pg_database --num_scenarios 1000
|
||||
|
||||
|
||||
Known Issues: PG
|
||||
==================
|
||||
|
||||
N/A
|
||||
|
||||
@@ -42,7 +42,7 @@ And place the downloaded tfrecord file to a folder. Let's call it ``exp_waymo``
|
||||
Likewise, place all downloaded tfrecord files to the same folder.
|
||||
|
||||
|
||||
3. Build Database
|
||||
3. Build Mini Database
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Run the following command to extract scenarios in ``exp_waymo`` to ``exp_converted``::
|
||||
|
||||
@@ -24,7 +24,8 @@ The dataset includes:
|
||||
using new Lyft data.
|
||||
|
||||
|
||||
Known Issues: Lyft
|
||||
===================
|
||||
|
||||
Known Issues
|
||||
#############
|
||||
N/A
|
||||
|
||||
|
||||
@@ -2,5 +2,7 @@
|
||||
nuPlan
|
||||
#############################
|
||||
|
||||
Known Issues
|
||||
==================
|
||||
Known Issues: nuPlan
|
||||
======================
|
||||
|
||||
N/A
|
||||
|
||||
@@ -2,5 +2,7 @@
|
||||
nuScenes
|
||||
#############################
|
||||
|
||||
Known Issues
|
||||
==================
|
||||
Known Issues: nuScenes
|
||||
=======================
|
||||
|
||||
N/A
|
||||
|
||||
@@ -26,7 +26,7 @@ The dataset includes:
|
||||
- Adjusted some road edge boundary height estimates
|
||||
|
||||
|
||||
1. Install requirements
|
||||
1. Install Waymo Toolkit
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
First of all, we have to install the waymo toolkit and tensorflow::
|
||||
@@ -40,7 +40,7 @@ First of all, we have to install the waymo toolkit and tensorflow::
|
||||
.. note::
|
||||
This package is only supported on Linux platform.
|
||||
|
||||
2. Download Raw Data
|
||||
2. Download TFRecord
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Waymo motion dataset is at `Google Cloud <https://console.cloud.google.com/storage/browser/waymo_open_dataset_motion_v_1_2_0>`_.
|
||||
@@ -72,7 +72,7 @@ The downloaded data should be stored in a directory like this::
|
||||
└── ...
|
||||
|
||||
|
||||
3. Build Database
|
||||
3. Build Waymo Database
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Run the following command to extract scenarios in any directory containing ``tfrecord``.
|
||||
@@ -82,7 +82,7 @@ Here we take converting raw data in ``training_20s`` as an example::
|
||||
|
||||
Now all converted scenarios will be placed at ``/path/to/your/database`` and are ready to be used in your work.
|
||||
|
||||
Known Issues
|
||||
==================
|
||||
Known Issues: Waymo
|
||||
=====================
|
||||
|
||||
N/A
|
||||
|
||||
Reference in New Issue
Block a user