Update nuScenes & Waymo Optimization (#47)

* update can bus

* Create LICENSE

* update waymo doc

* protobuf requirement

* just warning

* Add warning for proto

* update PR template

* fix length bug

* try sharing nusc

* imu heading

* fix 161 168

* add badge

* fix doc

* update doc

* format

* update cp

* update nuscenes interface

* update doc

* prediction nuscenes

* use drivable aread for nuscenes

* allow converting prediction

* format

* fix bug

* optimize

* clean RAM

* delete more

* restore to

* add only lane

* use token

* add warning

* format

* fix bug
This commit is contained in:
Quanyi Li
2023-12-02 13:50:44 +00:00
committed by GitHub
parent 7ec01fc8c1
commit 2db22c74a8
18 changed files with 478 additions and 146 deletions

View File

@@ -6,4 +6,6 @@
* [ ] I have merged the latest main branch into current branch. * [ ] I have merged the latest main branch into current branch.
* [ ] I have run `bash scripts/format.sh` before merging. * [ ] I have run `bash scripts/format.sh` before merging.
* [ ] I updated documentation, if there are related change
* [ ] I add tests if there are new functions or bug-fixing
* Please use "squash and merge" mode. * Please use "squash and merge" mode.

201
LICENSE Normal file
View File

@@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@@ -1,5 +1,9 @@
# ScenarioNet # ScenarioNet
[![Documentation Status](https://readthedocs.org/projects/scenarionet/badge/?version=latest)](https://scenarionet.readthedocs.io/en/latest/?badge=latest)
[![build](https://github.com/metadriverse/scenarionet/workflows/test/badge.svg)](http://github.com/metadriverse/scenarionet/actions)
[![GitHub license](https://img.shields.io/github/license/metadriverse/scenarionet)](https://github.com/metadriverse/scenarionet/blob/main/LICENSE.txt)
**Open-Source Platform for Large-Scale Traffic Scenario Simulation and Modeling** **Open-Source Platform for Large-Scale Traffic Scenario Simulation and Modeling**
[ [

View File

@@ -28,18 +28,17 @@ After that, the scenarios will be loaded to MetaDrive simulator for closed-loop
First of all, please install `MetaDrive <https://github.com/metadriverse/metadrive>`_ and `ScenarioNet <https://github.com/metadriverse/scenarionet>`_ following these steps :ref:`installation`. First of all, please install `MetaDrive <https://github.com/metadriverse/metadrive>`_ and `ScenarioNet <https://github.com/metadriverse/scenarionet>`_ following these steps :ref:`installation`.
1. Setup Waymo toolkit 1. Setup Requirements
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For any dataset, the first step after installing ScenarioNet is to install the corresponding official toolkit as we need to use it to parse the original data and convert to our internal scenario description. For Waymo data, please install the toolkit via:: For any dataset, the first step after installing ScenarioNet is to install the corresponding official toolkit as we need to use it to parse the original data and convert to our internal scenario description.
For Waymo data, we already have the parser in ScenarioNet so just install the TensorFlow and Protobuf via::
pip install waymo-open-dataset-tf-2-11-0
pip install tensorflow==2.11.0 pip install tensorflow==2.11.0
conda install protobuf==3.20
.. note:: .. note::
This package is only supported on Linux platform. You may fail to install ``protobuf`` if using ``pip install protobuf==3.20``.
`waymo-open-dataset` may degrade numpy, causing conflicts with `cv2` (`opencv-python`).
A workaround is to ``pip install numpy==1.24.2``
For other datasets like nuPlan and nuScenes, you need to setup `nuplan-devkit <https://github.com/motional/nuplan-devkit>`_ and `nuscenes-devkit <https://github.com/nutonomy/nuscenes-devkit>`_ respectively. For other datasets like nuPlan and nuScenes, you need to setup `nuplan-devkit <https://github.com/motional/nuplan-devkit>`_ and `nuscenes-devkit <https://github.com/nutonomy/nuscenes-devkit>`_ respectively.
Guidance on how to setup these datasets and connect them with ScenarioNet can be found at :ref:`datasets`. Guidance on how to setup these datasets and connect them with ScenarioNet can be found at :ref:`datasets`.

View File

@@ -27,6 +27,9 @@ First of all, we have to install the ``nuplan-devkit``.
pip install -r requirements.txt pip install -r requirements.txt
pip install -e . pip install -e .
# additional requirements
pip install pytorch-lightning
# 2. or install from PyPI # 2. or install from PyPI
pip install nuplan-devkit pip install nuplan-devkit
@@ -51,7 +54,7 @@ Thus please download the following files:
We recommend to download the mini split to test and make yourself familiar with the setup process. We recommend to download the mini split to test and make yourself familiar with the setup process.
All downloaded files are ``.tgz`` files and can be uncompressed by ``tar -zxf xyz.tgz``. All downloaded files are ``.zip`` files and can be uncompressed by ``unzip "*.zip"``.
All data should be placed to ``~/nuplan/dataset`` and the folder structure should comply `file hierarchy <https://nuplan-devkit.readthedocs.io/en/latest/dataset_setup.html#filesystem-hierarchy>`_. All data should be placed to ``~/nuplan/dataset`` and the folder structure should comply `file hierarchy <https://nuplan-devkit.readthedocs.io/en/latest/dataset_setup.html#filesystem-hierarchy>`_.
.. code-block:: text .. code-block:: text
@@ -85,7 +88,7 @@ All data should be placed to ``~/nuplan/dataset`` and the folder structure shoul
│ │ ├── 2021.06.09.17.23.18_veh-38_00773_01140.db │ │ ├── 2021.06.09.17.23.18_veh-38_00773_01140.db
│ │ ├── ... │ │ ├── ...
│ │ └── 2021.10.11.08.31.07_veh-50_01750_01948.db │ │ └── 2021.10.11.08.31.07_veh-50_01750_01948.db
│ └── trainval │ └── train_boston
│ ├── 2021.05.12.22.00.38_veh-35_01008_01518.db │ ├── 2021.05.12.22.00.38_veh-35_01008_01518.db
│ ├── 2021.06.09.17.23.18_veh-38_00773_01140.db │ ├── 2021.06.09.17.23.18_veh-38_00773_01140.db
│ ├── ... │ ├── ...

View File

@@ -60,7 +60,9 @@ Secondly, all files should be organized to the following structure::
├── maps/ ├── maps/
| ├──basemap/ | ├──basemap/
| ├──prediction/ | ├──prediction/
| ──expansion/ | ──expansion/
├── can_bus/
| ├──scene-1110_meta.json
| └──... | └──...
├── samples/ ├── samples/
| ├──CAM_BACK | ├──CAM_BACK
@@ -95,9 +97,9 @@ Please try ``nuscenes-devkit/python-sdk/tutorials/nuscenes_tutorial.ipynb`` and
After setup the raw data, convertors in ScenarioNet can read the raw data, convert scenario format and build the database. After setup the raw data, convertors in ScenarioNet can read the raw data, convert scenario format and build the database.
Here we take converting raw data in ``nuscenes-mini`` as an example:: Here we take converting raw data in ``nuscenes-mini`` as an example::
python -m scenarionet.convert_nuscenes -d /path/to/your/database --version v1.0-mini --dataroot /nuscens/data/path python -m scenarionet.convert_nuscenes -d /path/to/your/database --split v1.0-mini --dataroot /nuscens/data/path
The ``version`` is to determine which split to convert. ``dataroot`` is set to ``/data/sets/nuscenes`` by default, The ``split`` is to determine which split to convert. ``dataroot`` is set to ``/data/sets/nuscenes`` by default,
but you need to specify it if your data is stored in any other directory. but you need to specify it if your data is stored in any other directory.
Now all converted scenarios will be placed at ``/path/to/your/database`` and are ready to be used in your work. Now all converted scenarios will be placed at ``/path/to/your/database`` and are ready to be used in your work.

View File

@@ -113,8 +113,12 @@ Convert nuScenes (Lyft)
.. code-block:: text .. code-block:: text
python -m scenarionet.convert_nuscenes [-h] [--database_path DATABASE_PATH] python -m scenarionet.convert_nuscenes [-h] [--database_path DATABASE_PATH]
[--dataset_name DATASET_NAME] [--version VERSION] [--dataset_name DATASET_NAME]
[--overwrite] [--num_workers NUM_WORKERS] [--split
{v1.0-mini,mini_val,v1.0-test,train,train_val,val,mini_train,v1.0-trainval}]
[--dataroot DATAROOT] [--map_radius MAP_RADIUS]
[--future FUTURE] [--past PAST] [--overwrite]
[--num_workers NUM_WORKERS]
Build database from nuScenes/Lyft scenarios Build database from nuScenes/Lyft scenarios
@@ -124,13 +128,31 @@ Convert nuScenes (Lyft)
directory, The path to place the data directory, The path to place the data
--dataset_name DATASET_NAME, -n DATASET_NAME --dataset_name DATASET_NAME, -n DATASET_NAME
Dataset name, will be used to generate scenario files Dataset name, will be used to generate scenario files
--version VERSION, -v VERSION --split
version of nuscenes data, scenario of this version {v1.0-mini,mini_val,v1.0-test,train,train_val,val,mini_train,v1.0-trainval}
will be converted Which splits of nuScenes data should be sued. If set
to ['v1.0-mini', 'v1.0-trainval', 'v1.0-test'], it
will convert the full log into scenarios with 20
second episode length. If set to ['mini_train',
'mini_val', 'train', 'train_val', 'val'], it will
convert segments used for nuScenes prediction
challenge to scenarios, resulting in more converted
scenarios. Generally, you should choose this parameter
from ['v1.0-mini', 'v1.0-trainval', 'v1.0-test'] to
get complete scenarios for planning unless you want to
use the converted scenario files for prediction task.
--dataroot DATAROOT The path of nuscenes data
--map_radius MAP_RADIUS The size of map
--future FUTURE 6 seconds by default. How many future seconds to
predict. Only available if split is chosen from
['mini_train', 'mini_val', 'train', 'train_val',
'val']
--past PAST 2 seconds by default. How many past seconds are used
for prediction. Only available if split is chosen from
['mini_train', 'mini_val', 'train', 'train_val',
'val']
--overwrite If the database_path exists, whether to overwrite it --overwrite If the database_path exists, whether to overwrite it
--num_workers NUM_WORKERS --num_workers NUM_WORKERS
number of workers to use
This script converted the recorded nuScenes scenario into our scenario descriptions. This script converted the recorded nuScenes scenario into our scenario descriptions.
@@ -187,7 +209,7 @@ we can aggregate them freely and enlarge the database.
.. code-block:: text .. code-block:: text
python -m scenarionet.merge [-h] --database_path DATABASE_PATH --from FROM [FROM ...] python -m scenarionet.merge [-h] --to DATABASE_PATH --from FROM [FROM ...]
[--exist_ok] [--overwrite] [--filter_moving_dist] [--exist_ok] [--overwrite] [--filter_moving_dist]
[--sdc_moving_dist_min SDC_MOVING_DIST_MIN] [--sdc_moving_dist_min SDC_MOVING_DIST_MIN]
@@ -196,7 +218,7 @@ we can aggregate them freely and enlarge the database.
optional arguments: optional arguments:
-h, --help show this help message and exit -h, --help show this help message and exit
--database_path DATABASE_PATH, -d DATABASE_PATH --database_path DATABASE_PATH, -d DATABASE_PATH, --to DATABASE_PATH
The name of the new combined database. It will create The name of the new combined database. It will create
a new directory to store dataset_summary.pkl and a new directory to store dataset_summary.pkl and
dataset_mapping.pkl. If exists_ok=True, those two .pkl dataset_mapping.pkl. If exists_ok=True, those two .pkl

View File

@@ -26,18 +26,17 @@ The dataset includes:
- Adjusted some road edge boundary height estimates - Adjusted some road edge boundary height estimates
1. Install Waymo Toolkit 1. Install Requirements
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
First of all, we have to install the waymo toolkit and tensorflow:: First of all, we have to install tensorflow and Protobuf::
pip install waymo-open-dataset-tf-2-11-0
pip install tensorflow==2.11.0 pip install tensorflow==2.11.0
conda install protobuf==3.20
.. note:: .. note::
This package is only supported on Linux platform. You may fail to install ``protobuf`` if using ``pip install protobuf==3.20``.
`waymo-open-dataset` may degrade numpy, causing conflicts with cv2.
A workaround is ``pip install numpy==1.24.2``
2. Download TFRecord 2. Download TFRecord
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

View File

@@ -115,17 +115,17 @@ def merge_database(
return summaries, mappings return summaries, mappings
def copy_database( def copy_database(from_path, to_path, exist_ok=False, overwrite=False, copy_raw_data=False, remove_source=False):
from_path, to_path, exist_ok=False, overwrite=False, copy_raw_data=False, remove_source=False, force_move=False
):
if not os.path.exists(from_path): if not os.path.exists(from_path):
raise FileNotFoundError("Can not find database: {}".format(from_path)) raise FileNotFoundError("Can not find database: {}".format(from_path))
if os.path.exists(to_path): if os.path.exists(to_path):
assert exist_ok, "to_directory already exists. Set exists_ok to allow turning it into a database" assert exist_ok, "to_directory already exists. Set exists_ok to allow turning it into a database"
assert not os.path.samefile(from_path, to_path), "to_directory is the same as from_directory. Abort!" assert not os.path.samefile(from_path, to_path), "to_directory is the same as from_directory. Abort!"
files = os.listdir(from_path) files = os.listdir(from_path)
if not force_move and (ScenarioDescription.DATASET.MAPPING_FILE in files official_file_num = sum(
and ScenarioDescription.DATASET.SUMMARY_FILE in files and len(files) > 2): [ScenarioDescription.DATASET.MAPPING_FILE in files, ScenarioDescription.DATASET.SUMMARY_FILE in files]
)
if remove_source and len(files) > official_file_num:
raise RuntimeError( raise RuntimeError(
"The source database is not allowed to move! " "The source database is not allowed to move! "
"This will break the relationship between this database and other database built on it." "This will break the relationship between this database and other database built on it."
@@ -146,9 +146,16 @@ def copy_database(
mappings = {key: "./" for key in summaries.keys()} mappings = {key: "./" for key in summaries.keys()}
save_summary_anda_mapping(summary_file, mapping_file, summaries, mappings) save_summary_anda_mapping(summary_file, mapping_file, summaries, mappings)
if remove_source and ScenarioDescription.DATASET.MAPPING_FILE in files and \ if remove_source:
ScenarioDescription.DATASET.SUMMARY_FILE in files and len(files) == 2: if ScenarioDescription.DATASET.MAPPING_FILE in files and ScenarioDescription.DATASET.SUMMARY_FILE in files \
shutil.rmtree(from_path) and len(files) == 2:
shutil.rmtree(from_path)
logger.info("Successfully remove: {}".format(from_path))
else:
logger.info(
"Failed to remove: {}, as it might contain scenario files "
"or has no summary file or mapping file".format(from_path)
)
def split_database( def split_database(

View File

@@ -1,11 +1,16 @@
desc = "Build database from nuScenes/Lyft scenarios" desc = "Build database from nuScenes/Lyft scenarios"
if __name__ == '__main__': prediction_split = ["mini_train", "mini_val", "train", "train_val", "val"]
scene_split = ["v1.0-mini", "v1.0-trainval", "v1.0-test"]
if __name__ == "__main__":
import pkg_resources # for suppress warning import pkg_resources # for suppress warning
import argparse import argparse
import os.path import os.path
from functools import partial
from scenarionet import SCENARIONET_DATASET_PATH from scenarionet import SCENARIONET_DATASET_PATH
from scenarionet.converter.nuscenes.utils import convert_nuscenes_scenario, get_nuscenes_scenarios from scenarionet.converter.nuscenes.utils import convert_nuscenes_scenario, get_nuscenes_scenarios, \
get_nuscenes_prediction_split
from scenarionet.converter.utils import write_to_directory from scenarionet.converter.utils import write_to_directory
parser = argparse.ArgumentParser(description=desc) parser = argparse.ArgumentParser(description=desc)
@@ -19,12 +24,29 @@ if __name__ == '__main__':
"--dataset_name", "-n", default="nuscenes", help="Dataset name, will be used to generate scenario files" "--dataset_name", "-n", default="nuscenes", help="Dataset name, will be used to generate scenario files"
) )
parser.add_argument( parser.add_argument(
"--version", "--split",
"-v", default="v1.0-mini",
default='v1.0-mini', choices=scene_split + prediction_split,
help="version of nuscenes data, scenario of this version will be converted " help="Which splits of nuScenes data should be sued. If set to {}, it will convert the full log into scenarios"
" with 20 second episode length. If set to {}, it will convert segments used for nuScenes prediction"
" challenge to scenarios, resulting in more converted scenarios. Generally, you should choose this "
" parameter from {} to get complete scenarios for planning unless you want to use the converted scenario "
" files for prediction task.".format(scene_split, prediction_split, scene_split)
) )
parser.add_argument("--dataroot", default="/data/sets/nuscenes", help="The path of nuscenes data") parser.add_argument("--dataroot", default="/data/sets/nuscenes", help="The path of nuscenes data")
parser.add_argument("--map_radius", default=500, type=float, help="The size of map")
parser.add_argument(
"--future",
default=6,
help="6 seconds by default. How many future seconds to predict. Only "
"available if split is chosen from {}".format(prediction_split)
)
parser.add_argument(
"--past",
default=2,
help="2 seconds by default. How many past seconds are used for prediction."
" Only available if split is chosen from {}".format(prediction_split)
)
parser.add_argument("--overwrite", action="store_true", help="If the database_path exists, whether to overwrite it") parser.add_argument("--overwrite", action="store_true", help="If the database_path exists, whether to overwrite it")
parser.add_argument("--num_workers", type=int, default=8, help="number of workers to use") parser.add_argument("--num_workers", type=int, default=8, help="number of workers to use")
args = parser.parse_args() args = parser.parse_args()
@@ -32,10 +54,14 @@ if __name__ == '__main__':
overwrite = args.overwrite overwrite = args.overwrite
dataset_name = args.dataset_name dataset_name = args.dataset_name
output_path = args.database_path output_path = args.database_path
version = args.version version = args.split
scenarios, nuscs = get_nuscenes_scenarios(args.dataroot, version, args.num_workers)
if version in scene_split:
scenarios, nuscs = get_nuscenes_scenarios(args.dataroot, version, args.num_workers)
else:
scenarios, nuscs = get_nuscenes_prediction_split(
args.dataroot, version, args.past, args.future, args.num_workers
)
write_to_directory( write_to_directory(
convert_func=convert_nuscenes_scenario, convert_func=convert_nuscenes_scenario,
scenarios=scenarios, scenarios=scenarios,
@@ -45,4 +71,8 @@ if __name__ == '__main__':
overwrite=overwrite, overwrite=overwrite,
num_workers=args.num_workers, num_workers=args.num_workers,
nuscenes=nuscs, nuscenes=nuscs,
past=[args.past for _ in range(args.num_workers)],
future=[args.future for _ in range(args.num_workers)],
prediction=[version in prediction_split for _ in range(args.num_workers)],
map_radius=[args.map_radius for _ in range(args.num_workers)],
) )

View File

@@ -35,7 +35,7 @@ try:
NUPLAN_PACKAGE_PATH = os.path.dirname(nuplan.__file__) NUPLAN_PACKAGE_PATH = os.path.dirname(nuplan.__file__)
except ImportError as e: except ImportError as e:
logger.warning("Can not import nuplan-devkit: {}".format(e)) raise RuntimeError(e)
EGO = "ego" EGO = "ego"

View File

@@ -5,12 +5,16 @@ import geopandas as gpd
import numpy as np import numpy as np
from metadrive.scenario import ScenarioDescription as SD from metadrive.scenario import ScenarioDescription as SD
from metadrive.type import MetaDriveType from metadrive.type import MetaDriveType
from nuscenes.eval.prediction.splits import get_prediction_challenge_split
from shapely.ops import unary_union from shapely.ops import unary_union
from scenarionet.converter.nuscenes.type import ALL_TYPE, HUMAN_TYPE, BICYCLE_TYPE, VEHICLE_TYPE from scenarionet.converter.nuscenes.type import ALL_TYPE, HUMAN_TYPE, BICYCLE_TYPE, VEHICLE_TYPE
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
try: try:
import logging
logging.getLogger('shapely.geos').setLevel(logging.CRITICAL)
from nuscenes import NuScenes from nuscenes import NuScenes
from nuscenes.can_bus.can_bus_api import NuScenesCanBus from nuscenes.can_bus.can_bus_api import NuScenesCanBus
from nuscenes.eval.common.utils import quaternion_yaw from nuscenes.eval.common.utils import quaternion_yaw
@@ -199,11 +203,16 @@ def get_tracks_from_frames(nuscenes: NuScenes, scene_info, frames, num_to_interp
interpolate_tracks[id]["state"]["position"] = interpolate( interpolate_tracks[id]["state"]["position"] = interpolate(
track["state"]["position"], track["state"]["valid"], new_valid track["state"]["position"], track["state"]["valid"], new_valid
) )
if id == "ego": if id == "ego" and not scene_info.get("prediction", False):
assert "prediction" not in scene_info
# We can get it from canbus # We can get it from canbus
canbus = NuScenesCanBus(dataroot=nuscenes.dataroot) try:
imu_pos = np.asarray([state["pos"] for state in canbus.get_messages(scene_info["name"], "pose")[::5]]) canbus = NuScenesCanBus(dataroot=nuscenes.dataroot)
interpolate_tracks[id]["state"]["position"][:len(imu_pos)] = imu_pos imu_pos = np.asarray([state["pos"] for state in canbus.get_messages(scene_info["name"], "pose")[::5]])
min_len = min(len(imu_pos), new_episode_len)
interpolate_tracks[id]["state"]["position"][:min_len] = imu_pos[:min_len]
except:
logger.info("Fail to get canbus data for {}".format(scene_info["name"]))
# velocity # velocity
interpolate_tracks[id]["state"]["velocity"] = interpolate( interpolate_tracks[id]["state"]["velocity"] = interpolate(
@@ -217,7 +226,6 @@ def get_tracks_from_frames(nuscenes: NuScenes, scene_info, frames, num_to_interp
interpolate_tracks[id]["state"]["velocity"][k - 1] = np.array([0., 0.]) interpolate_tracks[id]["state"]["velocity"][k - 1] = np.array([0., 0.])
# speed outlier check # speed outlier check
max_vel = np.max(np.linalg.norm(interpolate_tracks[id]["state"]["velocity"], axis=-1)) max_vel = np.max(np.linalg.norm(interpolate_tracks[id]["state"]["velocity"], axis=-1))
assert max_vel < 50, "Abnormal velocity!"
if max_vel > 30: if max_vel > 30:
print("\nWARNING: Too large speed for {}: {}".format(id, max_vel)) print("\nWARNING: Too large speed for {}: {}".format(id, max_vel))
@@ -225,16 +233,21 @@ def get_tracks_from_frames(nuscenes: NuScenes, scene_info, frames, num_to_interp
# then update position # then update position
new_heading = interpolate_heading(track["state"]["heading"], track["state"]["valid"], new_valid) new_heading = interpolate_heading(track["state"]["heading"], track["state"]["valid"], new_valid)
interpolate_tracks[id]["state"]["heading"] = new_heading interpolate_tracks[id]["state"]["heading"] = new_heading
if id == "ego": if id == "ego" and not scene_info.get("prediction", False):
assert "prediction" not in scene_info
# We can get it from canbus # We can get it from canbus
canbus = NuScenesCanBus(dataroot=nuscenes.dataroot) try:
imu_heading = np.asarray( canbus = NuScenesCanBus(dataroot=nuscenes.dataroot)
[ imu_heading = np.asarray(
quaternion_yaw(Quaternion(state["orientation"])) [
for state in canbus.get_messages(scene_info["name"], "pose")[::5] quaternion_yaw(Quaternion(state["orientation"]))
] for state in canbus.get_messages(scene_info["name"], "pose")[::5]
) ]
interpolate_tracks[id]["state"]["heading"][:len(imu_heading)] = imu_heading )
min_len = min(len(imu_heading), new_episode_len)
interpolate_tracks[id]["state"]["heading"][:min_len] = imu_heading[:min_len]
except:
logger.info("Fail to get canbus data for {}".format(scene_info["name"]))
for k, v in track["state"].items(): for k, v in track["state"].items():
if k in ["valid", "heading", "position", "velocity"]: if k in ["valid", "heading", "position", "velocity"]:
@@ -256,7 +269,7 @@ def get_tracks_from_frames(nuscenes: NuScenes, scene_info, frames, num_to_interp
return normalized_ret, map_center return normalized_ret, map_center
def get_map_features(scene_info, nuscenes: NuScenes, map_center, radius=500, points_distance=1): def get_map_features(scene_info, nuscenes: NuScenes, map_center, radius=500, points_distance=1, only_lane=False):
""" """
Extract map features from nuscenes data. The objects in specified region will be returned. Sampling rate determines Extract map features from nuscenes data. The objects in specified region will be returned. Sampling rate determines
the distance between 2 points when extracting lane center line. the distance between 2 points when extracting lane center line.
@@ -286,49 +299,72 @@ def get_map_features(scene_info, nuscenes: NuScenes, map_center, radius=500, poi
map_objs = map_api.get_records_in_radius(map_center[0], map_center[1], radius, layer_names) map_objs = map_api.get_records_in_radius(map_center[0], map_center[1], radius, layer_names)
# build map boundary if not only_lane:
polygons = [] # build map boundary
# for id in map_objs["drivable_area"]: polygons = []
# seg_info = map_api.get("drivable_area", id) for id in map_objs["drivable_area"]:
# assert seg_info["token"] == id seg_info = map_api.get("drivable_area", id)
# for polygon_token in seg_info["polygon_tokens"]: assert seg_info["token"] == id
# polygon = map_api.extract_polygon(polygon_token) for polygon_token in seg_info["polygon_tokens"]:
# polygons.append(polygon) polygon = map_api.extract_polygon(polygon_token)
for id in map_objs["road_segment"]: polygons.append(polygon)
seg_info = map_api.get("road_segment", id) # for id in map_objs["road_segment"]:
assert seg_info["token"] == id # seg_info = map_api.get("road_segment", id)
polygon = map_api.extract_polygon(seg_info["polygon_token"]) # assert seg_info["token"] == id
polygons.append(polygon) # polygon = map_api.extract_polygon(seg_info["polygon_token"])
for id in map_objs["road_block"]: # polygons.append(polygon)
seg_info = map_api.get("road_block", id) # for id in map_objs["road_block"]:
assert seg_info["token"] == id # seg_info = map_api.get("road_block", id)
polygon = map_api.extract_polygon(seg_info["polygon_token"]) # assert seg_info["token"] == id
polygons.append(polygon) # polygon = map_api.extract_polygon(seg_info["polygon_token"])
polygons = [geom if geom.is_valid else geom.buffer(0) for geom in polygons] # polygons.append(polygon)
boundaries = gpd.GeoSeries(unary_union(polygons)).boundary.explode(index_parts=True) polygons = [geom if geom.is_valid else geom.buffer(0) for geom in polygons]
for idx, boundary in enumerate(boundaries[0]): boundaries = gpd.GeoSeries(unary_union(polygons)).boundary.explode(index_parts=True)
block_points = np.array(list(i for i in zip(boundary.coords.xy[0], boundary.coords.xy[1]))) for idx, boundary in enumerate(boundaries[0]):
id = "boundary_{}".format(idx) block_points = np.array(list(i for i in zip(boundary.coords.xy[0], boundary.coords.xy[1])))
ret[id] = { id = "boundary_{}".format(idx)
SD.TYPE: MetaDriveType.LINE_SOLID_SINGLE_WHITE, ret[id] = {
SD.POLYLINE: block_points - np.asarray(map_center)[:2] SD.TYPE: MetaDriveType.LINE_SOLID_SINGLE_WHITE,
} SD.POLYLINE: block_points - np.asarray(map_center)[:2]
}
# broken line # broken line
for id in map_objs["lane_divider"]: for id in map_objs["lane_divider"]:
line_info = map_api.get("lane_divider", id) line_info = map_api.get("lane_divider", id)
assert line_info["token"] == id assert line_info["token"] == id
line = map_api.extract_line(line_info["line_token"]).coords.xy line = map_api.extract_line(line_info["line_token"]).coords.xy
line = np.asarray([[line[0][i], line[1][i]] for i in range(len(line[0]))]) line = np.asarray([[line[0][i], line[1][i]] for i in range(len(line[0]))])
ret[id] = {SD.TYPE: MetaDriveType.LINE_BROKEN_SINGLE_WHITE, SD.POLYLINE: line - np.asarray(map_center)[:2]} ret[id] = {SD.TYPE: MetaDriveType.LINE_BROKEN_SINGLE_WHITE, SD.POLYLINE: line - np.asarray(map_center)[:2]}
# solid line # solid line
for id in map_objs["road_divider"]: for id in map_objs["road_divider"]:
line_info = map_api.get("road_divider", id) line_info = map_api.get("road_divider", id)
assert line_info["token"] == id assert line_info["token"] == id
line = map_api.extract_line(line_info["line_token"]).coords.xy line = map_api.extract_line(line_info["line_token"]).coords.xy
line = np.asarray([[line[0][i], line[1][i]] for i in range(len(line[0]))]) line = np.asarray([[line[0][i], line[1][i]] for i in range(len(line[0]))])
ret[id] = {SD.TYPE: MetaDriveType.LINE_SOLID_SINGLE_YELLOW, SD.POLYLINE: line - np.asarray(map_center)[:2]} ret[id] = {SD.TYPE: MetaDriveType.LINE_SOLID_SINGLE_YELLOW, SD.POLYLINE: line - np.asarray(map_center)[:2]}
# crosswalk
for id in map_objs["ped_crossing"]:
info = map_api.get("ped_crossing", id)
assert info["token"] == id
boundary = map_api.extract_polygon(info["polygon_token"]).exterior.xy
boundary_polygon = np.asarray([[boundary[0][i], boundary[1][i]] for i in range(len(boundary[0]))])
ret[id] = {
SD.TYPE: MetaDriveType.CROSSWALK,
SD.POLYGON: boundary_polygon - np.asarray(map_center)[:2],
}
# walkway
for id in map_objs["walkway"]:
info = map_api.get("walkway", id)
assert info["token"] == id
boundary = map_api.extract_polygon(info["polygon_token"]).exterior.xy
boundary_polygon = np.asarray([[boundary[0][i], boundary[1][i]] for i in range(len(boundary[0]))])
ret[id] = {
SD.TYPE: MetaDriveType.BOUNDARY_SIDEWALK,
SD.POLYGON: boundary_polygon - np.asarray(map_center)[:2],
}
# normal lane # normal lane
for id in map_objs["lane"]: for id in map_objs["lane"]:
@@ -365,28 +401,6 @@ def get_map_features(scene_info, nuscenes: NuScenes, map_center, radius=500, poi
SD.EXIT: map_api.get_outgoing_lane_ids(id) SD.EXIT: map_api.get_outgoing_lane_ids(id)
} }
# crosswalk
for id in map_objs["ped_crossing"]:
info = map_api.get("ped_crossing", id)
assert info["token"] == id
boundary = map_api.extract_polygon(info["polygon_token"]).exterior.xy
boundary_polygon = np.asarray([[boundary[0][i], boundary[1][i]] for i in range(len(boundary[0]))])
ret[id] = {
SD.TYPE: MetaDriveType.CROSSWALK,
SD.POLYGON: boundary_polygon - np.asarray(map_center)[:2],
}
# walkway
for id in map_objs["walkway"]:
info = map_api.get("walkway", id)
assert info["token"] == id
boundary = map_api.extract_polygon(info["polygon_token"]).exterior.xy
boundary_polygon = np.asarray([[boundary[0][i], boundary[1][i]] for i in range(len(boundary[0]))])
ret[id] = {
SD.TYPE: MetaDriveType.BOUNDARY_SIDEWALK,
SD.POLYGON: boundary_polygon - np.asarray(map_center)[:2],
}
# # stop_line # # stop_line
# for id in map_objs["stop_line"]: # for id in map_objs["stop_line"]:
# info = map_api.get("stop_line", id) # info = map_api.get("stop_line", id)
@@ -404,22 +418,41 @@ def get_map_features(scene_info, nuscenes: NuScenes, map_center, radius=500, poi
return ret return ret
def convert_nuscenes_scenario(scene, version, nuscenes: NuScenes): def convert_nuscenes_scenario(
token, version, nuscenes: NuScenes, map_radius=500, prediction=False, past=2, future=6, only_lane=False
):
""" """
Data will be interpolated to 0.1s time interval, while the time interval of original key frames are 0.5s. Data will be interpolated to 0.1s time interval, while the time interval of original key frames are 0.5s.
""" """
scene_token = scene["token"] if prediction:
scenario_log_interval = 0.1 past_num = int(past / 0.5)
scene_info = nuscenes.get("scene", scene_token) future_num = int(future / 0.5)
frames = [] nusc = nuscenes
current_frame = nuscenes.get("sample", scene_info["first_sample_token"]) instance_token, sample_token = token.split("_")
while current_frame["token"] != scene_info["last_sample_token"]: current_sample = last_sample = next_sample = nusc.get("sample", sample_token)
frames.append(parse_frame(current_frame, nuscenes)) past_samples = []
current_frame = nuscenes.get("sample", current_frame["next"]) future_samples = []
frames.append(parse_frame(current_frame, nuscenes)) for _ in range(past_num):
assert current_frame["next"] == "" if last_sample["prev"] == "":
assert len(frames) == scene_info["nbr_samples"], "Number of sample mismatches! " break
last_sample = nusc.get("sample", last_sample["prev"])
past_samples.append(parse_frame(last_sample, nusc))
for _ in range(future_num):
if next_sample["next"] == "":
break
next_sample = nusc.get("sample", next_sample["next"])
future_samples.append(parse_frame(next_sample, nusc))
frames = past_samples[::-1] + [parse_frame(current_sample, nusc)] + future_samples
scene_info = copy.copy(nusc.get("scene", current_sample["scene_token"]))
scene_info["name"] = scene_info["name"] + "_" + token
scene_info["prediction"] = True
frames_scene_info = [frames, scene_info]
else:
frames_scene_info = extract_frames_scene_info(token, nuscenes)
scenario_log_interval = 0.1
frames, scene_info = frames_scene_info
result = SD() result = SD()
result[SD.ID] = scene_info["name"] result[SD.ID] = scene_info["name"]
result[SD.VERSION] = "nuscenes" + version result[SD.VERSION] = "nuscenes" + version
@@ -430,7 +463,7 @@ def convert_nuscenes_scenario(scene, version, nuscenes: NuScenes):
result[SD.METADATA]["map"] = nuscenes.get("log", scene_info["log_token"])["location"] result[SD.METADATA]["map"] = nuscenes.get("log", scene_info["log_token"])["location"]
result[SD.METADATA]["date"] = nuscenes.get("log", scene_info["log_token"])["date_captured"] result[SD.METADATA]["date"] = nuscenes.get("log", scene_info["log_token"])["date_captured"]
result[SD.METADATA]["coordinate"] = "right-handed" result[SD.METADATA]["coordinate"] = "right-handed"
result[SD.METADATA]["scenario_token"] = scene_token # result[SD.METADATA]["dscenario_token"] = scene_token
result[SD.METADATA][SD.ID] = scene_info["name"] result[SD.METADATA][SD.ID] = scene_info["name"]
result[SD.METADATA]["scenario_id"] = scene_info["name"] result[SD.METADATA]["scenario_id"] = scene_info["name"]
result[SD.METADATA]["sample_rate"] = scenario_log_interval result[SD.METADATA]["sample_rate"] = scenario_log_interval
@@ -443,16 +476,39 @@ def convert_nuscenes_scenario(scene, version, nuscenes: NuScenes):
result[SD.DYNAMIC_MAP_STATES] = {} result[SD.DYNAMIC_MAP_STATES] = {}
# map # map
result[SD.MAP_FEATURES] = get_map_features(scene_info, nuscenes, map_center, 500) result[SD.MAP_FEATURES] = get_map_features(scene_info, nuscenes, map_center, map_radius, only_lane=only_lane)
del frames_scene_info
del frames
del scene_info
return result return result
def extract_frames_scene_info(scene, nuscenes):
scene_token = scene["token"]
scene_info = nuscenes.get("scene", scene_token)
frames = []
current_frame = nuscenes.get("sample", scene_info["first_sample_token"])
while current_frame["token"] != scene_info["last_sample_token"]:
frames.append(parse_frame(current_frame, nuscenes))
current_frame = nuscenes.get("sample", current_frame["next"])
frames.append(parse_frame(current_frame, nuscenes))
assert current_frame["next"] == ""
assert len(frames) == scene_info["nbr_samples"], "Number of sample mismatches! "
return frames, scene_info
def get_nuscenes_scenarios(dataroot, version, num_workers=2): def get_nuscenes_scenarios(dataroot, version, num_workers=2):
nusc = NuScenes(version=version, dataroot=dataroot) nusc = NuScenes(version=version, dataroot=dataroot)
scenarios = nusc.scene
def _get_nusc(): def _get_nusc():
return NuScenes(version=version, dataroot=dataroot) return NuScenes(version=version, dataroot=dataroot)
return scenarios, [_get_nusc() for _ in range(num_workers)] return nusc.scene, [nusc for _ in range(num_workers)]
def get_nuscenes_prediction_split(dataroot, version, past, future, num_workers=2):
def _get_nusc():
return NuScenes(version="v1.0-mini" if "mini" in version else "v1.0-trainval", dataroot=dataroot)
nusc = _get_nusc()
return get_prediction_challenge_split(version, dataroot=dataroot), [nusc for _ in range(num_workers)]

View File

@@ -234,6 +234,8 @@ def write_to_directory_single_worker(
sd_scenario[SD.METADATA][SD.SUMMARY.NUMBER_SUMMARY] = SD.get_number_summary(sd_scenario) sd_scenario[SD.METADATA][SD.SUMMARY.NUMBER_SUMMARY] = SD.get_number_summary(sd_scenario)
# update summary/mapping dicy # update summary/mapping dicy
if export_file_name in summary:
logger.warning("Scenario {} already exists and will be overwritten!".format(export_file_name))
summary[export_file_name] = copy.deepcopy(sd_scenario[SD.METADATA]) summary[export_file_name] = copy.deepcopy(sd_scenario[SD.METADATA])
mapping[export_file_name] = "" # in the same dir mapping[export_file_name] = "" # in the same dir

View File

@@ -446,10 +446,7 @@ def preprocess_waymo_scenarios(files, worker_index):
:param worker_index, the index for the worker :param worker_index, the index for the worker
:return: a list of scenario_pb2 :return: a list of scenario_pb2
""" """
try: from scenarionet.converter.waymo.waymo_protos import scenario_pb2
scenario_pb2
except NameError:
raise ImportError("Please install waymo_open_dataset package: pip install waymo-open-dataset-tf-2-11-0")
for file in tqdm.tqdm(files, desc="Process Waymo scenarios for worker {}".format(worker_index)): for file in tqdm.tqdm(files, desc="Process Waymo scenarios for worker {}".format(worker_index)):
file_path = os.path.join(file) file_path = os.path.join(file)

View File

@@ -10,6 +10,7 @@ if __name__ == '__main__':
parser.add_argument( parser.add_argument(
"--database_path", "--database_path",
"-d", "-d",
"--to",
required=True, required=True,
help="The name of the new combined database. " help="The name of the new combined database. "
"It will create a new directory to store dataset_summary.pkl and dataset_mapping.pkl. " "It will create a new directory to store dataset_summary.pkl and dataset_mapping.pkl. "

View File

@@ -19,9 +19,16 @@ def test_copy_database():
# move # move
for k, from_path in enumerate(dataset_paths): for k, from_path in enumerate(dataset_paths):
to = os.path.join(TMP_PATH, str(k)) to = os.path.join(TMP_PATH, str(k))
copy_database(from_path, to, force_move=True, exist_ok=True, overwrite=True) copy_database(from_path, to, exist_ok=True, overwrite=True)
moved_path.append(to) moved_path.append(to)
assert os.path.exists(from_path) assert os.path.exists(from_path)
success = False
try:
copy_database(from_path, to, exist_ok=True, overwrite=True, remove_source=True)
except RuntimeError:
success = True
assert success
assert os.path.exists(to)
merge_database(output_path, *moved_path, exist_ok=True, overwrite=True, try_generate_missing_file=True) merge_database(output_path, *moved_path, exist_ok=True, overwrite=True, try_generate_missing_file=True)
# verify # verify
summary, sorted_scenarios, mapping = read_dataset_summary(output_path) summary, sorted_scenarios, mapping = read_dataset_summary(output_path)

View File

@@ -88,7 +88,7 @@
"\n", "\n",
"def make_GIF(frames, name=\"demo.gif\"):\n", "def make_GIF(frames, name=\"demo.gif\"):\n",
" print(\"Generate gif...\")\n", " print(\"Generate gif...\")\n",
" imgs = [pygame.surfarray.array3d(frame) for frame in frames]\n", " imgs = [frame for frame in frames]\n",
" imgs = [Image.fromarray(img) for img in imgs]\n", " imgs = [Image.fromarray(img) for img in imgs]\n",
" imgs[0].save(name, save_all=True, append_images=imgs[1:], duration=50, loop=0)" " imgs[0].save(name, save_all=True, append_images=imgs[1:], duration=50, loop=0)"
] ]

View File

@@ -82,7 +82,7 @@
"\n", "\n",
"def make_GIF(frames, name=\"demo.gif\"):\n", "def make_GIF(frames, name=\"demo.gif\"):\n",
" print(\"Generate gif...\")\n", " print(\"Generate gif...\")\n",
" imgs = [pygame.surfarray.array3d(frame) for frame in frames]\n", " imgs = [frame for frame in frames]\n",
" imgs = [Image.fromarray(img) for img in imgs]\n", " imgs = [Image.fromarray(img) for img in imgs]\n",
" imgs[0].save(name, save_all=True, append_images=imgs[1:], duration=50, loop=0)" " imgs[0].save(name, save_all=True, append_images=imgs[1:], duration=50, loop=0)"
] ]