waymo example
This commit is contained in:
@@ -2,5 +2,87 @@
|
||||
Waymo
|
||||
#############################
|
||||
|
||||
| Website: https://waymo.com/open/
|
||||
| Download: https://waymo.com/open/download/
|
||||
| Paper: https://arxiv.org/abs/2104.10133
|
||||
|
||||
The dataset includes:
|
||||
|
||||
- 103,354, 20s 10Hz segments (over 20 million frames), mined for interesting interactions
|
||||
- 574 hours of data
|
||||
- Sensor data
|
||||
- 4 short-range lidars
|
||||
- 1 mid-range lidar
|
||||
- Object data
|
||||
- 10.8M objects with tracking IDs
|
||||
- Labels for 3 object classes - Vehicles, Pedestrians, Cyclists
|
||||
- 3D bounding boxes for each object
|
||||
- Mined for interesting behaviors and scenarios for behavior prediction research, such as unprotected turns, merges, lane changes, and intersections
|
||||
- 3D bounding boxes are generated by a model trained on the Perception Dataset and detailed in our paper: Offboard 3D Object Detection from Point Cloud Sequences
|
||||
Map data
|
||||
- 3D map data for each segment
|
||||
- Locations include: San Francisco, Phoenix, Mountain View, Los Angeles, Detroit, and Seattle
|
||||
- Added entrances to driveways (the map already Includes lane centers, lane boundaries, road boundaries, crosswalks, speed bumps and stop signs)
|
||||
- Adjusted some road edge boundary height estimates
|
||||
|
||||
|
||||
1. Install requirements
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
First of all, we have to install the waymo toolkit and tensorflow::
|
||||
|
||||
pip install waymo-open-dataset-tf-2-11-0
|
||||
pip install tensorflow==2.11.0
|
||||
|
||||
# Or install with scenarionet
|
||||
pip install -e .[waymo]
|
||||
|
||||
.. note::
|
||||
This package is only supported on Linux platform.
|
||||
|
||||
2. Download Raw Data
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Waymo motion dataset is at `Google Cloud <https://console.cloud.google.com/storage/browser/waymo_open_dataset_motion_v_1_2_0>`_.
|
||||
For downloading all datasets, ``gsutil`` is required.
|
||||
The installation tutorial is at https://cloud.google.com/storage/docs/gsutil_install.
|
||||
|
||||
After this, you can access all data and download them to current directory ``./`` by::
|
||||
|
||||
gsutil -m cp -r "gs://waymo_open_dataset_motion_v_1_2_0/uncompressed/scenario" .
|
||||
|
||||
Or one just can download a part of the dataset using command like::
|
||||
|
||||
gsutil -m cp -r "gs://waymo_open_dataset_motion_v_1_2_0/uncompressed/scenario/training_20s" .
|
||||
|
||||
The downloaded data should be stored in a directory like this::
|
||||
|
||||
waymo
|
||||
├── training_20s/
|
||||
| ├── training_20s.tfrecord-00000-of-01000
|
||||
| ├── training_20s.tfrecord-00001-of-01000
|
||||
| └── ...
|
||||
├── validation/
|
||||
| ├── validation.tfrecord-00000-of-00150
|
||||
| ├── validation.tfrecord-00001-of-00150
|
||||
| └── ...
|
||||
└── testing/
|
||||
├── testing.tfrecord-00000-of-00150
|
||||
├── testing.tfrecord-00001-of-00150
|
||||
└── ...
|
||||
|
||||
|
||||
3. Build Database
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Run the following command to extract scenarios in any directory containing ``tfrecord``.
|
||||
Here we take converting raw data in ``training_20s`` as an example::
|
||||
|
||||
python -m scenarionet.convert_waymo -d /path/to/your/database --raw_data_path ./waymo/training_20s --num_files=1000
|
||||
|
||||
Now all converted scenarios will be placed at ``/path/to/your/database`` and are ready to be used in your work.
|
||||
|
||||
Known Issues
|
||||
==================
|
||||
|
||||
N/A
|
||||
|
||||
Reference in New Issue
Block a user