refactor
This commit is contained in:
@@ -2,3 +2,4 @@ import os
|
||||
|
||||
SCENARIONET_PACKAGE_PATH = os.path.dirname(os.path.abspath(__file__))
|
||||
SCENARIONET_REPO_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
SCENARIONET_DATASET_PATH = os.path.join(SCENARIONET_REPO_PATH, "dataset")
|
||||
|
||||
29
scenarionet/builder/conditions.py
Normal file
29
scenarionet/builder/conditions.py
Normal file
@@ -0,0 +1,29 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def validate_sdc_track(sdc_state):
|
||||
"""
|
||||
This function filters the scenario based on SDC information.
|
||||
|
||||
Rule 1: Filter out if the trajectory length < 10
|
||||
|
||||
Rule 2: Filter out if the whole trajectory last < 5s, assuming sampling frequency = 10Hz.
|
||||
"""
|
||||
valid_array = sdc_state["valid"]
|
||||
sdc_trajectory = sdc_state["position"][valid_array, :2]
|
||||
sdc_track_length = [
|
||||
np.linalg.norm(sdc_trajectory[i] - sdc_trajectory[i + 1]) for i in range(sdc_trajectory.shape[0] - 1)
|
||||
]
|
||||
sdc_track_length = sum(sdc_track_length)
|
||||
|
||||
# Rule 1
|
||||
if sdc_track_length < 10:
|
||||
return False
|
||||
|
||||
print("sdc_track_length: ", sdc_track_length)
|
||||
|
||||
# Rule 2
|
||||
if valid_array.sum() < 50:
|
||||
return False
|
||||
|
||||
return True
|
||||
0
scenarionet/converter/scripts/__init__.py
Normal file
0
scenarionet/converter/scripts/__init__.py
Normal file
@@ -55,6 +55,7 @@ def convert_nuscenes(version, dataroot, output_path, worker_index=None, verbose=
|
||||
with open(p, "wb") as f:
|
||||
pickle.dump(sd_scene, f)
|
||||
metadata_recorder[export_file_name] = copy.deepcopy(sd_scene[ScenarioDescription.METADATA])
|
||||
|
||||
# rename and save
|
||||
if delay_remove is not None:
|
||||
shutil.rmtree(delay_remove)
|
||||
@@ -10,11 +10,10 @@ import argparse
|
||||
import copy
|
||||
import os
|
||||
import pickle
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
|
||||
from scenarionet.converter.utils import dict_recursive_remove_array
|
||||
from scenarionet.converter.utils import dict_recursive_remove_array, get_agent_summary, get_number_summary
|
||||
|
||||
try:
|
||||
import tensorflow as tf
|
||||
@@ -39,84 +38,6 @@ from scenarionet.converter.waymo.utils import extract_tracks, extract_dynamic_ma
|
||||
import sys
|
||||
|
||||
|
||||
def validate_sdc_track(sdc_state):
|
||||
"""
|
||||
This function filters the scenario based on SDC information.
|
||||
|
||||
Rule 1: Filter out if the trajectory length < 10
|
||||
|
||||
Rule 2: Filter out if the whole trajectory last < 5s, assuming sampling frequency = 10Hz.
|
||||
"""
|
||||
valid_array = sdc_state["valid"]
|
||||
sdc_trajectory = sdc_state["position"][valid_array, :2]
|
||||
sdc_track_length = [
|
||||
np.linalg.norm(sdc_trajectory[i] - sdc_trajectory[i + 1]) for i in range(sdc_trajectory.shape[0] - 1)
|
||||
]
|
||||
sdc_track_length = sum(sdc_track_length)
|
||||
|
||||
# Rule 1
|
||||
if sdc_track_length < 10:
|
||||
return False
|
||||
|
||||
print("sdc_track_length: ", sdc_track_length)
|
||||
|
||||
# Rule 2
|
||||
if valid_array.sum() < 50:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def _get_agent_summary(state_dict, id, type):
|
||||
track = state_dict["position"]
|
||||
valid_track = track[state_dict["valid"], :2]
|
||||
distance = float(sum(np.linalg.norm(valid_track[i] - valid_track[i + 1]) for i in range(valid_track.shape[0] - 1)))
|
||||
valid_length = int(sum(state_dict["valid"]))
|
||||
|
||||
continuous_valid_length = 0
|
||||
for v in state_dict["valid"]:
|
||||
if v:
|
||||
continuous_valid_length += 1
|
||||
if continuous_valid_length > 0 and not v:
|
||||
break
|
||||
|
||||
return {
|
||||
"type": type,
|
||||
"object_id": str(id),
|
||||
"track_length": int(len(track)),
|
||||
"distance": float(distance),
|
||||
"valid_length": int(valid_length),
|
||||
"continuous_valid_length": int(continuous_valid_length)
|
||||
}
|
||||
|
||||
|
||||
def _get_number_summary(scenario):
|
||||
number_summary_dict = {}
|
||||
number_summary_dict["object"] = len(scenario[SD.TRACKS])
|
||||
number_summary_dict["dynamic_object_states"] = len(scenario[SD.DYNAMIC_MAP_STATES])
|
||||
number_summary_dict["map_features"] = len(scenario[SD.MAP_FEATURES])
|
||||
number_summary_dict["object_types"] = set(v["type"] for v in scenario[SD.TRACKS].values())
|
||||
|
||||
object_types_counter = defaultdict(int)
|
||||
for v in scenario[SD.TRACKS].values():
|
||||
object_types_counter[v["type"]] += 1
|
||||
number_summary_dict["object_types_counter"] = dict(object_types_counter)
|
||||
|
||||
# Number of different dynamic object states
|
||||
dynamic_object_states_types = set()
|
||||
dynamic_object_states_counter = defaultdict(int)
|
||||
for v in scenario[SD.DYNAMIC_MAP_STATES].values():
|
||||
for step_state in v["state"]["object_state"]:
|
||||
if step_state is None:
|
||||
continue
|
||||
dynamic_object_states_types.add(step_state)
|
||||
dynamic_object_states_counter[step_state] += 1
|
||||
number_summary_dict["dynamic_object_states_types"] = dynamic_object_states_types
|
||||
number_summary_dict["dynamic_object_states_counter"] = dict(dynamic_object_states_counter)
|
||||
|
||||
return number_summary_dict
|
||||
|
||||
|
||||
def convert_waymo(file_list, input_path, output_path, worker_index=None):
|
||||
scenario = scenario_pb2.Scenario()
|
||||
|
||||
@@ -202,15 +123,15 @@ def convert_waymo(file_list, input_path, output_path, worker_index=None):
|
||||
export_file_name = "sd_{}_{}.pkl".format(file, scenario.scenario_id)
|
||||
|
||||
summary_dict = {}
|
||||
summary_dict["sdc"] = _get_agent_summary(
|
||||
summary_dict["sdc"] = get_agent_summary(
|
||||
state_dict=md_scenario.get_sdc_track()["state"], id=sdc_id, type=md_scenario.get_sdc_track()["type"]
|
||||
)
|
||||
for track_id, track in md_scenario[SD.TRACKS].items():
|
||||
summary_dict[track_id] = _get_agent_summary(state_dict=track["state"], id=track_id, type=track["type"])
|
||||
summary_dict[track_id] = get_agent_summary(state_dict=track["state"], id=track_id, type=track["type"])
|
||||
md_scenario[SD.METADATA]["object_summary"] = summary_dict
|
||||
|
||||
# Count some objects occurrence
|
||||
md_scenario[SD.METADATA]["number_summary"] = _get_number_summary(md_scenario)
|
||||
md_scenario[SD.METADATA]["number_summary"] = get_number_summary(md_scenario)
|
||||
|
||||
metadata_recorder[export_file_name] = copy.deepcopy(md_scenario[SD.METADATA])
|
||||
|
||||
@@ -1,15 +1,13 @@
|
||||
import math
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
from metadrive.scenario import ScenarioDescription as SD
|
||||
|
||||
|
||||
def nuplan_to_metadrive_vector(vector, nuplan_center=(0, 0)):
|
||||
"All vec in nuplan should be centered in (0,0) to avoid numerical explosion"
|
||||
vector = np.array(vector)
|
||||
# if len(vector.shape) == 1:
|
||||
# vector[1] *= -1
|
||||
# else:
|
||||
# vector[:, 1] *= -1
|
||||
vector -= np.asarray(nuplan_center)
|
||||
return vector
|
||||
|
||||
@@ -47,6 +45,57 @@ def dict_recursive_remove_array(d):
|
||||
d[k] = dict_recursive_remove_array(d[k])
|
||||
return d
|
||||
|
||||
|
||||
def mph_to_kmh(speed_in_mph: float):
|
||||
speed_in_kmh = speed_in_mph * 1.609344
|
||||
return speed_in_kmh
|
||||
return speed_in_kmh
|
||||
|
||||
|
||||
def get_agent_summary(state_dict, id, type):
|
||||
track = state_dict["position"]
|
||||
valid_track = track[state_dict["valid"], :2]
|
||||
distance = float(sum(np.linalg.norm(valid_track[i] - valid_track[i + 1]) for i in range(valid_track.shape[0] - 1)))
|
||||
valid_length = int(sum(state_dict["valid"]))
|
||||
|
||||
continuous_valid_length = 0
|
||||
for v in state_dict["valid"]:
|
||||
if v:
|
||||
continuous_valid_length += 1
|
||||
if continuous_valid_length > 0 and not v:
|
||||
break
|
||||
|
||||
return {
|
||||
"type": type,
|
||||
"object_id": str(id),
|
||||
"track_length": int(len(track)),
|
||||
"distance": float(distance),
|
||||
"valid_length": int(valid_length),
|
||||
"continuous_valid_length": int(continuous_valid_length)
|
||||
}
|
||||
|
||||
|
||||
def get_number_summary(scenario):
|
||||
number_summary_dict = {}
|
||||
number_summary_dict["object"] = len(scenario[SD.TRACKS])
|
||||
number_summary_dict["dynamic_object_states"] = len(scenario[SD.DYNAMIC_MAP_STATES])
|
||||
number_summary_dict["map_features"] = len(scenario[SD.MAP_FEATURES])
|
||||
number_summary_dict["object_types"] = set(v["type"] for v in scenario[SD.TRACKS].values())
|
||||
|
||||
object_types_counter = defaultdict(int)
|
||||
for v in scenario[SD.TRACKS].values():
|
||||
object_types_counter[v["type"]] += 1
|
||||
number_summary_dict["object_types_counter"] = dict(object_types_counter)
|
||||
|
||||
# Number of different dynamic object states
|
||||
dynamic_object_states_types = set()
|
||||
dynamic_object_states_counter = defaultdict(int)
|
||||
for v in scenario[SD.DYNAMIC_MAP_STATES].values():
|
||||
for step_state in v["state"]["object_state"]:
|
||||
if step_state is None:
|
||||
continue
|
||||
dynamic_object_states_types.add(step_state)
|
||||
dynamic_object_states_counter[step_state] += 1
|
||||
number_summary_dict["dynamic_object_states_types"] = dynamic_object_states_types
|
||||
number_summary_dict["dynamic_object_states_counter"] = dict(dynamic_object_states_counter)
|
||||
|
||||
return number_summary_dict
|
||||
|
||||
Reference in New Issue
Block a user