Update env (#7)
* add capture script * gymnasium API * training with gymnasium API
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
import os.path
|
||||
|
||||
from metadrive.envs.scenario_env import ScenarioEnv
|
||||
from metadrive.envs.gym_wrapper import GymEnvWrapper
|
||||
|
||||
from scenarionet import SCENARIONET_REPO_PATH, SCENARIONET_DATASET_PATH
|
||||
from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO
|
||||
@@ -13,8 +14,8 @@ if __name__ == '__main__':
|
||||
stop = int(100_000_000)
|
||||
|
||||
config = dict(
|
||||
env=env,
|
||||
env_config=dict(
|
||||
env=GymEnvWrapper,
|
||||
env_config=dict(inner_class=ScenarioEnv, inner_config=dict(
|
||||
# scenario
|
||||
start_scenario_index=0,
|
||||
num_scenarios=32,
|
||||
@@ -33,8 +34,7 @@ if __name__ == '__main__':
|
||||
|
||||
# training
|
||||
horizon=None,
|
||||
use_lateral_reward=True,
|
||||
),
|
||||
)),
|
||||
|
||||
# # ===== Evaluation =====
|
||||
evaluation_interval=2,
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
import os.path
|
||||
|
||||
from metadrive.envs.gym_wrapper import GymEnvWrapper
|
||||
from metadrive.envs.scenario_env import ScenarioEnv
|
||||
from scenarionet import SCENARIONET_REPO_PATH, SCENARIONET_DATASET_PATH
|
||||
from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO
|
||||
from scenarionet_training.train_utils.utils import train, get_train_parser, get_exp_name
|
||||
|
||||
config = dict(
|
||||
env=ScenarioEnv,
|
||||
env_config=dict(
|
||||
env=GymEnvWrapper,
|
||||
env_config=dict(inner_class=ScenarioEnv, inner_config=dict(
|
||||
# scenario
|
||||
start_scenario_index=0,
|
||||
num_scenarios=40000,
|
||||
@@ -42,7 +42,7 @@ config = dict(
|
||||
|
||||
vehicle_config=dict(side_detector=dict(num_lasers=0))
|
||||
|
||||
),
|
||||
)),
|
||||
|
||||
# ===== Evaluation =====
|
||||
evaluation_interval=15,
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
import os.path
|
||||
from ray.tune import grid_search
|
||||
from metadrive.envs.scenario_env import ScenarioEnv
|
||||
|
||||
from metadrive.envs.gym_wrapper import GymEnvWrapper
|
||||
from scenarionet import SCENARIONET_REPO_PATH, SCENARIONET_DATASET_PATH
|
||||
from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO
|
||||
from scenarionet_training.train_utils.utils import train, get_train_parser, get_exp_name
|
||||
|
||||
config = dict(
|
||||
env=ScenarioEnv,
|
||||
env_config=dict(
|
||||
env=GymEnvWrapper,
|
||||
env_config=dict(inner_class=ScenarioEnv, inner_config=dict(
|
||||
# scenario
|
||||
start_scenario_index=0,
|
||||
num_scenarios=40000,
|
||||
@@ -41,7 +41,7 @@ config = dict(
|
||||
|
||||
vehicle_config=dict(side_detector=dict(num_lasers=0))
|
||||
|
||||
),
|
||||
)),
|
||||
|
||||
# ===== Evaluation =====
|
||||
evaluation_interval=15,
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
import os.path
|
||||
|
||||
from metadrive.envs.gym_wrapper import GymEnvWrapper
|
||||
from metadrive.envs.scenario_env import ScenarioEnv
|
||||
from scenarionet import SCENARIONET_REPO_PATH, SCENARIONET_DATASET_PATH
|
||||
from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO
|
||||
from scenarionet_training.train_utils.utils import train, get_train_parser, get_exp_name
|
||||
|
||||
config = dict(
|
||||
env=ScenarioEnv,
|
||||
env_config=dict(
|
||||
env=GymEnvWrapper,
|
||||
env_config=dict(inner_class=ScenarioEnv, inner_config=dict(
|
||||
# scenario
|
||||
start_scenario_index=0,
|
||||
num_scenarios=40000,
|
||||
@@ -41,55 +41,56 @@ config = dict(
|
||||
|
||||
vehicle_config=dict(side_detector=dict(num_lasers=0))
|
||||
|
||||
),
|
||||
)),
|
||||
|
||||
# ===== Evaluation =====
|
||||
evaluation_interval=15,
|
||||
evaluation_num_episodes=1000,
|
||||
# TODO (LQY), this is a sample from testset do eval on all scenarios after training!
|
||||
evaluation_config=dict(env_config=dict(start_scenario_index=0,
|
||||
num_scenarios=1000,
|
||||
sequential_seed=True,
|
||||
curriculum_level=1, # turn off
|
||||
data_directory=os.path.join(SCENARIONET_DATASET_PATH, "waymo_test"))),
|
||||
evaluation_num_workers=10,
|
||||
metrics_smoothing_episodes=10,
|
||||
# ===== Evaluation =====
|
||||
evaluation_interval=15,
|
||||
evaluation_num_episodes=1000,
|
||||
# TODO (LQY), this is a sample from testset do eval on all scenarios after training!
|
||||
evaluation_config=dict(env_config=dict(start_scenario_index=0,
|
||||
num_scenarios=1000,
|
||||
sequential_seed=True,
|
||||
curriculum_level=1, # turn off
|
||||
data_directory=os.path.join(SCENARIONET_DATASET_PATH,
|
||||
"waymo_test"))),
|
||||
evaluation_num_workers=10,
|
||||
metrics_smoothing_episodes=10,
|
||||
|
||||
# ===== Training =====
|
||||
model=dict(fcnet_hiddens=[512, 256, 128]),
|
||||
horizon=600,
|
||||
num_sgd_iter=20,
|
||||
lr=1e-4,
|
||||
rollout_fragment_length=500,
|
||||
sgd_minibatch_size=200,
|
||||
train_batch_size=50000,
|
||||
num_gpus=0.5,
|
||||
num_cpus_per_worker=0.3,
|
||||
num_cpus_for_driver=1,
|
||||
num_workers=20,
|
||||
framework="tf"
|
||||
)
|
||||
# ===== Training =====
|
||||
model=dict(fcnet_hiddens=[512, 256, 128]),
|
||||
horizon=600,
|
||||
num_sgd_iter=20,
|
||||
lr=1e-4,
|
||||
rollout_fragment_length=500,
|
||||
sgd_minibatch_size=200,
|
||||
train_batch_size=50000,
|
||||
num_gpus=0.5,
|
||||
num_cpus_per_worker=0.3,
|
||||
num_cpus_for_driver=1,
|
||||
num_workers=20,
|
||||
framework="tf"
|
||||
)
|
||||
|
||||
if __name__ == '__main__':
|
||||
# PG data is generated with seeds 10,000 to 60,000
|
||||
# PG data is generated with seeds 10,000 to 60,000
|
||||
args = get_train_parser().parse_args()
|
||||
exp_name = get_exp_name(args)
|
||||
stop = int(100_000_000)
|
||||
config["num_gpus"] = 0.5 if args.num_gpus != 0 else 0
|
||||
exp_name = get_exp_name(args)
|
||||
stop = int(100_000_000)
|
||||
config["num_gpus"] = 0.5 if args.num_gpus != 0 else 0
|
||||
|
||||
train(
|
||||
MultiWorkerPPO,
|
||||
exp_name=exp_name,
|
||||
save_dir=os.path.join(SCENARIONET_REPO_PATH, "experiment"),
|
||||
keep_checkpoints_num=5,
|
||||
stop=stop,
|
||||
config=config,
|
||||
num_gpus=args.num_gpus,
|
||||
# num_seeds=args.num_seeds,
|
||||
num_seeds=5,
|
||||
test_mode=args.test,
|
||||
# local_mode=True,
|
||||
# TODO remove this when we release our code
|
||||
# wandb_key_file="~/wandb_api_key_file.txt",
|
||||
wandb_project="scenarionet",
|
||||
)
|
||||
train(
|
||||
MultiWorkerPPO,
|
||||
exp_name=exp_name,
|
||||
save_dir=os.path.join(SCENARIONET_REPO_PATH, "experiment"),
|
||||
keep_checkpoints_num=5,
|
||||
stop=stop,
|
||||
config=config,
|
||||
num_gpus=args.num_gpus,
|
||||
# num_seeds=args.num_seeds,
|
||||
num_seeds=5,
|
||||
test_mode=args.test,
|
||||
# local_mode=True,
|
||||
# TODO remove this when we release our code
|
||||
# wandb_key_file="~/wandb_api_key_file.txt",
|
||||
wandb_project="scenarionet",
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user