Rebuttal (#15)

* pg+nuplan train

* Need map

* use gym wrapper

* use createGymWrapper

* doc

* use all scenarios!

* update 80000 scenario

* train script
This commit is contained in:
Quanyi Li
2023-08-08 17:33:02 +01:00
committed by GitHub
parent e9c1419a91
commit 64bf9811b9
12 changed files with 274 additions and 26 deletions

View File

@@ -1,14 +1,14 @@
import os.path
from ray.tune import grid_search
from metadrive.envs.scenario_env import ScenarioEnv
from metadrive.envs.gym_wrapper import GymEnvWrapper
from metadrive.envs.gym_wrapper import createGymWrapper
from scenarionet import SCENARIONET_REPO_PATH, SCENARIONET_DATASET_PATH
from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO
from scenarionet_training.train_utils.utils import train, get_train_parser, get_exp_name
config = dict(
env=GymEnvWrapper,
env_config=dict(inner_class=ScenarioEnv, inner_config=dict(
env=createGymWrapper(ScenarioEnv),
env_config=dict(
# scenario
start_scenario_index=0,
num_scenarios=40000,
@@ -21,7 +21,7 @@ config = dict(
# episodes_to_evaluate_curriculum=400, # default=num_scenarios/curriculum_level
# traffic & light
reactive_traffic=False,
reactive_traffic=True,
no_static_vehicles=True,
no_light=True,
static_traffic_object=True,
@@ -41,7 +41,7 @@ config = dict(
vehicle_config=dict(side_detector=dict(num_lasers=0))
)),
),
# ===== Evaluation =====
evaluation_interval=15,