Rebuttal (#15)
* pg+nuplan train * Need map * use gym wrapper * use createGymWrapper * doc * use all scenarios! * update 80000 scenario * train script
This commit is contained in:
@@ -9,7 +9,7 @@ import numpy as np
|
||||
import tqdm
|
||||
from metadrive.constants import TerminationState
|
||||
from metadrive.envs.scenario_env import ScenarioEnv
|
||||
from metadrive.envs.gym_wrapper import GymEnvWrapper
|
||||
from metadrive.envs.gym_wrapper import createGymWrapper
|
||||
from ray import tune
|
||||
from ray.tune import CLIReporter
|
||||
|
||||
@@ -292,7 +292,7 @@ def eval_ckpt(config,
|
||||
episodes_to_evaluate_curriculum=num_scenarios,
|
||||
data_directory=scenario_data_path,
|
||||
use_render=render))
|
||||
env = GymEnvWrapper(dict(inner_class=ScenarioEnv, inner_config=env_config))
|
||||
env = createGymWrapper(ScenarioEnv)(env_config)
|
||||
|
||||
super_data = defaultdict(list)
|
||||
EPISODE_NUM = env.config["num_scenarios"]
|
||||
|
||||
Reference in New Issue
Block a user