Rebuttal (#15)

* pg+nuplan train

* Need map

* use gym wrapper

* use createGymWrapper

* doc

* use all scenarios!

* update 80000 scenario

* train script
This commit is contained in:
Quanyi Li
2023-08-08 17:33:02 +01:00
committed by GitHub
parent e9c1419a91
commit 64bf9811b9
12 changed files with 274 additions and 26 deletions

20
documentation/Makefile Normal file
View File

@@ -0,0 +1,20 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SOURCEDIR = source
BUILDDIR = build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

9
documentation/README.md Normal file
View File

@@ -0,0 +1,9 @@
This folder contains files for the documentation: [https://scenarionet.readthedocs.io/](https://scenarionet.readthedocs.io/).
To build documents locally, please run the following codes:
```
pip install sphinx sphinx_rtd_theme
cd scenarionet/documentation
make html
```

35
documentation/make.bat Normal file
View File

@@ -0,0 +1,35 @@
@ECHO OFF
pushd %~dp0
REM Command file for Sphinx documentation
if "%SPHINXBUILD%" == "" (
set SPHINXBUILD=sphinx-build
)
set SOURCEDIR=source
set BUILDDIR=build
if "%1" == "" goto help
%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
echo.
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
echo.installed, then set the SPHINXBUILD environment variable to point
echo.to the full path of the 'sphinx-build' executable. Alternatively you
echo.may add the Sphinx directory to PATH.
echo.
echo.If you don't have Sphinx installed, grab it from
echo.http://sphinx-doc.org/
exit /b 1
)
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
goto end
:help
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
:end
popd

View File

@@ -0,0 +1,55 @@
# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to documentation with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
# -- Project information -----------------------------------------------------
project = 'ScenarioNet'
copyright = 'MetaDriverse'
author = 'MetaDriverse'
# The full version, including alpha/beta/rc tags
release = '0.1.1'
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
"sphinx.ext.autosectionlabel",
"sphinx_rtd_theme"
]
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = []
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = 'sphinx_rtd_theme'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = []

View File

@@ -0,0 +1,33 @@
########################
ScenarioNet Documentation
########################
Welcome to the ScenarioNet documentation!
ScenarioNet is an open-sourced platform for large-scale traffic scenario modeling and simulation with the following features:
* ScenarioNet defines a unified scenario description format containing HD maps and detailed object annotations.
* ScenarioNet provides tools to build and manage databases built from various data sources including real-world datasets like Waymo, nuScenes, Lyft L5, and nuPlan datasets and synthetic datasets like the procedural generated ones and safety-critical ones.
* Scenarios recorded in this format can be replayed in the digital twins with multiple views, ranging from Bird-Eye-View layout to realistic 3D rendering.
It can thus support several applications including large-scale scenario generation, AD testing, imitation learning, and reinforcement learning in both single-agent and multi-agent settings. The results imply scaling up the training data brings new research opportunities in machine learning and autonomous driving.
This documentation brings you the information on installation, usages and more of ScenarioNet!
You can also visit the `GitHub repo <https://github.com/metadriverse/scenarionet>`_ and `Webpage <https://metadriverse.github.io/scenarionet/>`_ for code and videos.
Please feel free to contact us if you have any suggestions or ideas!
Citation
########
You can read `our white paper <https://arxiv.org/pdf/2306.12241.pdf>`_ describing the details of ScenarioNet! If you use ScenarioNet in your own work, please cite:
.. code-block:: latex
@article{li2023scenarionet,
title={ScenarioNet: Open-Source Platform for Large-Scale Traffic Scenario Simulation and Modeling},
author={Li, Quanyi and Peng, Zhenghao and Feng, Lan and Duan, Chenda and Mo, Wenjie and Zhou, Bolei and others},
journal={arXiv preprint arXiv:2306.12241},
year={2023}
}

View File

@@ -1,16 +1,13 @@
import pygame import pygame
from metadrive.engine.asset_loader import AssetLoader from metadrive.engine.asset_loader import AssetLoader
from metadrive.envs.real_data_envs.nuscenes_env import ScenarioEnv from metadrive.envs.real_data_envs.nuscenes_env import ScenarioEnv
from metadrive.envs.gym_wrapper import GymEnvWrapper from metadrive.envs.gym_wrapper import createGymWrapper
from scenarionet_training.train_utils.utils import initialize_ray, get_function from scenarionet_training.train_utils.utils import initialize_ray, get_function
from scenarionet_training.scripts.train_nuplan import config from scenarionet_training.scripts.train_nuplan import config
if __name__ == "__main__": if __name__ == "__main__":
initialize_ray(test_mode=False, num_gpus=1) initialize_ray(test_mode=False, num_gpus=1)
env = GymEnvWrapper( env = createGymWrapper(ScenarioEnv)({
dict(
inner_class=ScenarioEnv,
inner_config={
# "data_directory": AssetLoader.file_path("nuscenes", return_raw_style=False), # "data_directory": AssetLoader.file_path("nuscenes", return_raw_style=False),
"data_directory": "D:\\scenarionet_testset\\nuplan_test\\nuplan_test_w_raw", "data_directory": "D:\\scenarionet_testset\\nuplan_test\\nuplan_test_w_raw",
"use_render": True, "use_render": True,
@@ -44,7 +41,7 @@ if __name__ == "__main__":
), ),
} }
) )
)
# env.reset() # env.reset()
# #

View File

@@ -1,7 +1,7 @@
import os.path import os.path
from metadrive.envs.scenario_env import ScenarioEnv from metadrive.envs.scenario_env import ScenarioEnv
from metadrive.envs.gym_wrapper import GymEnvWrapper from metadrive.envs.gym_wrapper import createGymWrapper
from scenarionet import SCENARIONET_REPO_PATH, SCENARIONET_DATASET_PATH from scenarionet import SCENARIONET_REPO_PATH, SCENARIONET_DATASET_PATH
from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO
@@ -14,8 +14,8 @@ if __name__ == '__main__':
stop = int(100_000_000) stop = int(100_000_000)
config = dict( config = dict(
env=GymEnvWrapper, env=createGymWrapper(ScenarioEnv),
env_config=dict(inner_class=ScenarioEnv, inner_config=dict( env_config=dict(
# scenario # scenario
start_scenario_index=0, start_scenario_index=0,
num_scenarios=32, num_scenarios=32,
@@ -34,7 +34,7 @@ if __name__ == '__main__':
# training # training
horizon=None, horizon=None,
)), ),
# # ===== Evaluation ===== # # ===== Evaluation =====
evaluation_interval=2, evaluation_interval=2,

View File

@@ -1,13 +1,13 @@
import os.path import os.path
from metadrive.envs.gym_wrapper import GymEnvWrapper from metadrive.envs.gym_wrapper import createGymWrapper
from metadrive.envs.scenario_env import ScenarioEnv from metadrive.envs.scenario_env import ScenarioEnv
from scenarionet import SCENARIONET_REPO_PATH, SCENARIONET_DATASET_PATH from scenarionet import SCENARIONET_REPO_PATH, SCENARIONET_DATASET_PATH
from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO
from scenarionet_training.train_utils.utils import train, get_train_parser, get_exp_name from scenarionet_training.train_utils.utils import train, get_train_parser, get_exp_name
config = dict( config = dict(
env=GymEnvWrapper, env=createGymWrapper(ScenarioEnv),
env_config=dict(inner_class=ScenarioEnv, inner_config=dict( env_config=dict(
# scenario # scenario
start_scenario_index=0, start_scenario_index=0,
num_scenarios=40000, num_scenarios=40000,
@@ -16,7 +16,7 @@ config = dict(
# curriculum training # curriculum training
curriculum_level=100, curriculum_level=100,
target_success_rate=0.8, # or 0.7 target_success_rate=0.7,
# episodes_to_evaluate_curriculum=400, # default=num_scenarios/curriculum_level # episodes_to_evaluate_curriculum=400, # default=num_scenarios/curriculum_level
# traffic & light # traffic & light
@@ -42,7 +42,7 @@ config = dict(
vehicle_config=dict(side_detector=dict(num_lasers=0)) vehicle_config=dict(side_detector=dict(num_lasers=0))
)), ),
# ===== Evaluation ===== # ===== Evaluation =====
evaluation_interval=15, evaluation_interval=15,

View File

@@ -1,14 +1,14 @@
import os.path import os.path
from ray.tune import grid_search from ray.tune import grid_search
from metadrive.envs.scenario_env import ScenarioEnv from metadrive.envs.scenario_env import ScenarioEnv
from metadrive.envs.gym_wrapper import GymEnvWrapper from metadrive.envs.gym_wrapper import createGymWrapper
from scenarionet import SCENARIONET_REPO_PATH, SCENARIONET_DATASET_PATH from scenarionet import SCENARIONET_REPO_PATH, SCENARIONET_DATASET_PATH
from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO
from scenarionet_training.train_utils.utils import train, get_train_parser, get_exp_name from scenarionet_training.train_utils.utils import train, get_train_parser, get_exp_name
config = dict( config = dict(
env=GymEnvWrapper, env=createGymWrapper(ScenarioEnv),
env_config=dict(inner_class=ScenarioEnv, inner_config=dict( env_config=dict(
# scenario # scenario
start_scenario_index=0, start_scenario_index=0,
num_scenarios=40000, num_scenarios=40000,
@@ -21,7 +21,7 @@ config = dict(
# episodes_to_evaluate_curriculum=400, # default=num_scenarios/curriculum_level # episodes_to_evaluate_curriculum=400, # default=num_scenarios/curriculum_level
# traffic & light # traffic & light
reactive_traffic=False, reactive_traffic=True,
no_static_vehicles=True, no_static_vehicles=True,
no_light=True, no_light=True,
static_traffic_object=True, static_traffic_object=True,
@@ -41,7 +41,7 @@ config = dict(
vehicle_config=dict(side_detector=dict(num_lasers=0)) vehicle_config=dict(side_detector=dict(num_lasers=0))
)), ),
# ===== Evaluation ===== # ===== Evaluation =====
evaluation_interval=15, evaluation_interval=15,

View File

@@ -0,0 +1,99 @@
import os.path
from ray import tune
from metadrive.envs.gym_wrapper import createGymWrapper
from metadrive.envs.scenario_env import ScenarioEnv
from scenarionet import SCENARIONET_REPO_PATH, SCENARIONET_DATASET_PATH
from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO
from scenarionet_training.train_utils.utils import train, get_train_parser, get_exp_name
config = dict(
env=createGymWrapper(ScenarioEnv),
env_config=dict(
# scenario
start_scenario_index=20000,
num_scenarios=40000, # 0-40000 nuplan, 40000-80000 pg
data_directory=os.path.join(SCENARIONET_DATASET_PATH, "pg_nuplan_train"),
sequential_seed=True,
no_map=True,
# store_map=False,
# store_data=False,
# curriculum training
curriculum_level=100,
target_success_rate=0.7,
# episodes_to_evaluate_curriculum=400, # default=num_scenarios/curriculum_level
# traffic & light
reactive_traffic=True,
no_static_vehicles=True,
no_light=True,
static_traffic_object=True,
# training scheme
horizon=None,
driving_reward=9,
steering_range_penalty=1.0,
heading_penalty=1,
lateral_penalty=1.0,
no_negative_reward=True,
on_lane_line_penalty=0,
crash_vehicle_penalty=1,
crash_human_penalty=1,
crash_object_penalty=0.5,
# out_of_road_penalty=2,
max_lateral_dist=2,
# crash_vehicle_done=True,
vehicle_config=dict(side_detector=dict(num_lasers=0))
),
# ===== Evaluation =====
evaluation_interval=15,
evaluation_num_episodes=1000,
evaluation_config=dict(env_config=dict(start_scenario_index=0,
num_scenarios=1000,
sequential_seed=True,
curriculum_level=1, # turn off
data_directory=os.path.join(SCENARIONET_DATASET_PATH, "nuplan_test"))),
evaluation_num_workers=10,
metrics_smoothing_episodes=10,
# ===== Training =====
model=dict(fcnet_hiddens=[512, 256, 128]),
horizon=600,
num_sgd_iter=20,
lr=1e-4,
rollout_fragment_length=500,
sgd_minibatch_size=200,
train_batch_size=50000,
num_gpus=0.5,
num_cpus_per_worker=0.3,
num_cpus_for_driver=1,
num_workers=20,
framework="tf"
)
if __name__ == '__main__':
# PG data is generated with seeds 10,000 to 60,000
args = get_train_parser().parse_args()
exp_name = get_exp_name(args)
stop = int(100_000_000)
config["num_gpus"] = 0.5 if args.num_gpus != 0 else 0
train(
MultiWorkerPPO,
exp_name=exp_name,
save_dir=os.path.join(SCENARIONET_REPO_PATH, "experiment"),
keep_checkpoints_num=5,
stop=stop,
config=config,
num_gpus=args.num_gpus,
# num_seeds=args.num_seeds,
num_seeds=4,
test_mode=args.test,
# local_mode=True,
# TODO remove this when we release our code
# wandb_key_file="~/wandb_api_key_file.txt",
wandb_project="scenarionet",
)

View File

@@ -1,13 +1,13 @@
import os.path import os.path
from metadrive.envs.gym_wrapper import GymEnvWrapper from metadrive.envs.gym_wrapper import createGymWrapper
from metadrive.envs.scenario_env import ScenarioEnv from metadrive.envs.scenario_env import ScenarioEnv
from scenarionet import SCENARIONET_REPO_PATH, SCENARIONET_DATASET_PATH from scenarionet import SCENARIONET_REPO_PATH, SCENARIONET_DATASET_PATH
from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO
from scenarionet_training.train_utils.utils import train, get_train_parser, get_exp_name from scenarionet_training.train_utils.utils import train, get_train_parser, get_exp_name
config = dict( config = dict(
env=GymEnvWrapper, env=createGymWrapper(ScenarioEnv),
env_config=dict(inner_class=ScenarioEnv, inner_config=dict( env_config=dict(
# scenario # scenario
start_scenario_index=0, start_scenario_index=0,
num_scenarios=40000, num_scenarios=40000,
@@ -41,7 +41,7 @@ config = dict(
vehicle_config=dict(side_detector=dict(num_lasers=0)) vehicle_config=dict(side_detector=dict(num_lasers=0))
)), ),
# ===== Evaluation ===== # ===== Evaluation =====
evaluation_interval=15, evaluation_interval=15,

View File

@@ -9,7 +9,7 @@ import numpy as np
import tqdm import tqdm
from metadrive.constants import TerminationState from metadrive.constants import TerminationState
from metadrive.envs.scenario_env import ScenarioEnv from metadrive.envs.scenario_env import ScenarioEnv
from metadrive.envs.gym_wrapper import GymEnvWrapper from metadrive.envs.gym_wrapper import createGymWrapper
from ray import tune from ray import tune
from ray.tune import CLIReporter from ray.tune import CLIReporter
@@ -292,7 +292,7 @@ def eval_ckpt(config,
episodes_to_evaluate_curriculum=num_scenarios, episodes_to_evaluate_curriculum=num_scenarios,
data_directory=scenario_data_path, data_directory=scenario_data_path,
use_render=render)) use_render=render))
env = GymEnvWrapper(dict(inner_class=ScenarioEnv, inner_config=env_config)) env = createGymWrapper(ScenarioEnv)(env_config)
super_data = defaultdict(list) super_data = defaultdict(list)
EPISODE_NUM = env.config["num_scenarios"] EPISODE_NUM = env.config["num_scenarios"]