diff --git a/scenarionet/convert_pg.py b/scenarionet/convert_pg.py index a169202..aefc34e 100644 --- a/scenarionet/convert_pg.py +++ b/scenarionet/convert_pg.py @@ -1,18 +1,18 @@ desc = "Build database from synthetic or procedurally generated scenarios" if __name__ == '__main__': - import pkg_resources # for suppress warning import argparse import os.path import os import metadrive + import tensorflow as tf from scenarionet import SCENARIONET_DATASET_PATH from scenarionet.converter.pg.utils import get_pg_scenarios, convert_pg_scenario from scenarionet.converter.utils import write_to_directory - os.environ["CUDA_VISIBLE_DEVICES"] = "" + tf.config.experimental.set_visible_devices([], "GPU") # For the PG environment config, see: scenarionet/converter/pg/utils.py:6 parser = argparse.ArgumentParser(description=desc) diff --git a/scenarionet/convert_waymo.py b/scenarionet/convert_waymo.py index 15025c5..d54bee5 100644 --- a/scenarionet/convert_waymo.py +++ b/scenarionet/convert_waymo.py @@ -1,17 +1,18 @@ desc = "Build database from Waymo scenarios" if __name__ == '__main__': - import pkg_resources # for suppress warning import shutil import argparse import logging import os + import tensorflow as tf from scenarionet import SCENARIONET_DATASET_PATH, SCENARIONET_REPO_PATH from scenarionet.converter.utils import write_to_directory - from scenarionet.converter.waymo.utils import convert_waymo_scenario, get_waymo_scenarios, preprocess_waymo_scenarios + from scenarionet.converter.waymo.utils import convert_waymo_scenario, get_waymo_scenarios, \ + preprocess_waymo_scenarios - os.environ["CUDA_VISIBLE_DEVICES"] = "" + tf.config.experimental.set_visible_devices([], "GPU") logger = logging.getLogger(__name__) diff --git a/scenarionet/tests/script/generate_sensor_offscreen.py b/scenarionet/tests/script/generate_sensor_offscreen.py index 638bf90..062d5bb 100644 --- a/scenarionet/tests/script/generate_sensor_offscreen.py +++ b/scenarionet/tests/script/generate_sensor_offscreen.py @@ -29,7 +29,7 @@ if __name__ == "__main__": "vehicle_config": dict( show_navi_mark=False, use_special_color=False, - image_source="semantic_camera", + # image_source="semantic_camera", lidar=dict(num_lasers=120, distance=50), lane_line_detector=dict(num_lasers=0, distance=50), side_detector=dict(num_lasers=12, distance=50) @@ -43,11 +43,11 @@ if __name__ == "__main__": "camera_height": 1.5, "camera_pitch": None, "camera_fov": 60, - "interface_panel": ["semantic_camera"], + # "interface_panel": ["semantic_camera"], "sensors": dict( - semantic_camera=(SemanticCamera, 1600, 900), - depth_camera=(DepthCamera, 800, 600), - rgb_camera=(RGBCamera, 800, 600), + # semantic_camera=(SemanticCamera, 1600, 900), + # depth_camera=(DepthCamera, 800, 600), + rgb_camera=(RGBCamera, 1600, 900), ), # ===== Remove useless items in the images ===== @@ -66,8 +66,8 @@ if __name__ == "__main__": # Run it once to initialize the TopDownRenderer env.render( mode="topdown", - screen_size=(1600, 900), - film_size=(9000, 9000), + screen_size=(900, 900), # The output image size + film_size=(9000, 9000), # The internal canvas size. You can use this to "crop" images. target_vehicle_heading_up=True, semantic_map=True, ) @@ -86,10 +86,16 @@ if __name__ == "__main__": to_image=False ) pygame.image.save(ret, str(file_dir / "bev_{}.png".format(t))) - env.engine.get_sensor("depth_camera").save_image(env.agent, str(file_dir / "depth_{}.jpg".format(t))) + # env.engine.get_sensor("depth_camera").save_image(env.agent, str(file_dir / "depth_{}.jpg".format(t))) env.engine.get_sensor("rgb_camera").save_image(env.agent, str(file_dir / "rgb_{}.jpg".format(t))) - env.engine.get_sensor("semantic_camera").save_image(env.agent, str(file_dir / "semantic_{}.jpg".format(t))) + # env.engine.get_sensor("semantic_camera").save_image(env.agent, str(file_dir / "semantic_{}.jpg".format(t))) print("Image at step {} is saved at: {}".format(t, file_dir)) + + scenario = env.engine.data_manager.current_scenario + print( + f"Current scenario ID {scenario['id']}, dataset version {scenario['version']}, len: {scenario['length']}" + ) + if t == 30: break env.step([1, 0.88])