Minor updates: disable TF gpu access (#95)
* Minor changes * Update generate_sensor_offscreen.py
This commit is contained in:
@@ -1,18 +1,18 @@
|
|||||||
desc = "Build database from synthetic or procedurally generated scenarios"
|
desc = "Build database from synthetic or procedurally generated scenarios"
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
import pkg_resources # for suppress warning
|
|
||||||
import argparse
|
import argparse
|
||||||
import os.path
|
import os.path
|
||||||
import os
|
import os
|
||||||
|
|
||||||
import metadrive
|
import metadrive
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
from scenarionet import SCENARIONET_DATASET_PATH
|
from scenarionet import SCENARIONET_DATASET_PATH
|
||||||
from scenarionet.converter.pg.utils import get_pg_scenarios, convert_pg_scenario
|
from scenarionet.converter.pg.utils import get_pg_scenarios, convert_pg_scenario
|
||||||
from scenarionet.converter.utils import write_to_directory
|
from scenarionet.converter.utils import write_to_directory
|
||||||
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
tf.config.experimental.set_visible_devices([], "GPU")
|
||||||
|
|
||||||
# For the PG environment config, see: scenarionet/converter/pg/utils.py:6
|
# For the PG environment config, see: scenarionet/converter/pg/utils.py:6
|
||||||
parser = argparse.ArgumentParser(description=desc)
|
parser = argparse.ArgumentParser(description=desc)
|
||||||
|
|||||||
@@ -1,17 +1,18 @@
|
|||||||
desc = "Build database from Waymo scenarios"
|
desc = "Build database from Waymo scenarios"
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
import pkg_resources # for suppress warning
|
|
||||||
import shutil
|
import shutil
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
from scenarionet import SCENARIONET_DATASET_PATH, SCENARIONET_REPO_PATH
|
from scenarionet import SCENARIONET_DATASET_PATH, SCENARIONET_REPO_PATH
|
||||||
from scenarionet.converter.utils import write_to_directory
|
from scenarionet.converter.utils import write_to_directory
|
||||||
from scenarionet.converter.waymo.utils import convert_waymo_scenario, get_waymo_scenarios, preprocess_waymo_scenarios
|
from scenarionet.converter.waymo.utils import convert_waymo_scenario, get_waymo_scenarios, \
|
||||||
|
preprocess_waymo_scenarios
|
||||||
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
tf.config.experimental.set_visible_devices([], "GPU")
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|||||||
@@ -29,7 +29,7 @@ if __name__ == "__main__":
|
|||||||
"vehicle_config": dict(
|
"vehicle_config": dict(
|
||||||
show_navi_mark=False,
|
show_navi_mark=False,
|
||||||
use_special_color=False,
|
use_special_color=False,
|
||||||
image_source="semantic_camera",
|
# image_source="semantic_camera",
|
||||||
lidar=dict(num_lasers=120, distance=50),
|
lidar=dict(num_lasers=120, distance=50),
|
||||||
lane_line_detector=dict(num_lasers=0, distance=50),
|
lane_line_detector=dict(num_lasers=0, distance=50),
|
||||||
side_detector=dict(num_lasers=12, distance=50)
|
side_detector=dict(num_lasers=12, distance=50)
|
||||||
@@ -43,11 +43,11 @@ if __name__ == "__main__":
|
|||||||
"camera_height": 1.5,
|
"camera_height": 1.5,
|
||||||
"camera_pitch": None,
|
"camera_pitch": None,
|
||||||
"camera_fov": 60,
|
"camera_fov": 60,
|
||||||
"interface_panel": ["semantic_camera"],
|
# "interface_panel": ["semantic_camera"],
|
||||||
"sensors": dict(
|
"sensors": dict(
|
||||||
semantic_camera=(SemanticCamera, 1600, 900),
|
# semantic_camera=(SemanticCamera, 1600, 900),
|
||||||
depth_camera=(DepthCamera, 800, 600),
|
# depth_camera=(DepthCamera, 800, 600),
|
||||||
rgb_camera=(RGBCamera, 800, 600),
|
rgb_camera=(RGBCamera, 1600, 900),
|
||||||
),
|
),
|
||||||
|
|
||||||
# ===== Remove useless items in the images =====
|
# ===== Remove useless items in the images =====
|
||||||
@@ -66,8 +66,8 @@ if __name__ == "__main__":
|
|||||||
# Run it once to initialize the TopDownRenderer
|
# Run it once to initialize the TopDownRenderer
|
||||||
env.render(
|
env.render(
|
||||||
mode="topdown",
|
mode="topdown",
|
||||||
screen_size=(1600, 900),
|
screen_size=(900, 900), # The output image size
|
||||||
film_size=(9000, 9000),
|
film_size=(9000, 9000), # The internal canvas size. You can use this to "crop" images.
|
||||||
target_vehicle_heading_up=True,
|
target_vehicle_heading_up=True,
|
||||||
semantic_map=True,
|
semantic_map=True,
|
||||||
)
|
)
|
||||||
@@ -86,10 +86,16 @@ if __name__ == "__main__":
|
|||||||
to_image=False
|
to_image=False
|
||||||
)
|
)
|
||||||
pygame.image.save(ret, str(file_dir / "bev_{}.png".format(t)))
|
pygame.image.save(ret, str(file_dir / "bev_{}.png".format(t)))
|
||||||
env.engine.get_sensor("depth_camera").save_image(env.agent, str(file_dir / "depth_{}.jpg".format(t)))
|
# env.engine.get_sensor("depth_camera").save_image(env.agent, str(file_dir / "depth_{}.jpg".format(t)))
|
||||||
env.engine.get_sensor("rgb_camera").save_image(env.agent, str(file_dir / "rgb_{}.jpg".format(t)))
|
env.engine.get_sensor("rgb_camera").save_image(env.agent, str(file_dir / "rgb_{}.jpg".format(t)))
|
||||||
env.engine.get_sensor("semantic_camera").save_image(env.agent, str(file_dir / "semantic_{}.jpg".format(t)))
|
# env.engine.get_sensor("semantic_camera").save_image(env.agent, str(file_dir / "semantic_{}.jpg".format(t)))
|
||||||
print("Image at step {} is saved at: {}".format(t, file_dir))
|
print("Image at step {} is saved at: {}".format(t, file_dir))
|
||||||
|
|
||||||
|
scenario = env.engine.data_manager.current_scenario
|
||||||
|
print(
|
||||||
|
f"Current scenario ID {scenario['id']}, dataset version {scenario['version']}, len: {scenario['length']}"
|
||||||
|
)
|
||||||
|
|
||||||
if t == 30:
|
if t == 30:
|
||||||
break
|
break
|
||||||
env.step([1, 0.88])
|
env.step([1, 0.88])
|
||||||
|
|||||||
Reference in New Issue
Block a user