Add come updates for Neurips paper (#4)
* scenarionet training * wandb * train utils * fix callback * run PPO * use pg test * save path * use torch * add dependency * update ignore * update training * large model * use curriculum training * add time to exp name * storage_path * restore * update training * use my key * add log message * check seed * restore callback * restore call bacl * add log message * add logging message * restore ray1.4 * length 500 * ray 100 * wandb * use tf * more levels * add callback * 10 worker * show level * no env horizon * callback result level * more call back * add diffuculty * add mroen stat * mroe stat * show levels * add callback * new * ep len 600 * fix setup * fix stepup * fix to 3.8 * update setup * parallel worker! * new exp * add callback * lateral dist * pg dataset * evaluate * modify config * align config * train single RL * update training script * 100w eval * less eval to reveal * 2000 env eval * new trianing * eval 1000 * update eval * more workers * more worker * 20 worker * dataset to database * split tool! * split dataset * try fix * train 003 * fix mapping * fix test * add waymo tqdm * utils * fix bug * fix bug * waymo * int type * 8 worker read * disable * read file * add log message * check existence * dist 0 * int * check num * suprass warning * add filter API * filter * store map false * new * ablation * filter * fix * update filyter * reanme to from * random select * add overlapping checj * fix * new training sceheme * new reward * add waymo train script * waymo different config * copy raw data * fix bug * add tqdm * update readme * waymo * pg * max lateral dist 3 * pg * crash_done instead of penalty * no crash done * gpu * update eval script * steering range penalty * evaluate * finish pg * update setup * fix bug * test * fix * add on line * train nuplan * generate sensor * udpate training * static obj * multi worker eval * filx bug * use ray for testing * eval! * filter senario * id filter * fox bug * dist = 2 * filter * eval * eval ret * ok * update training pg * test before use * store data=False * collect figures * capture pic --------- Co-authored-by: Quanyi Li <quanyi@bolei-gpu02.cs.ucla.edu>
This commit is contained in:
96
scenarionet_training/scripts/train_nuplan.py
Normal file
96
scenarionet_training/scripts/train_nuplan.py
Normal file
@@ -0,0 +1,96 @@
|
||||
import os.path
|
||||
|
||||
from metadrive.envs.scenario_env import ScenarioEnv
|
||||
from scenarionet import SCENARIONET_REPO_PATH, SCENARIONET_DATASET_PATH
|
||||
from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO
|
||||
from scenarionet_training.train_utils.utils import train, get_train_parser, get_exp_name
|
||||
|
||||
config = dict(
|
||||
env=ScenarioEnv,
|
||||
env_config=dict(
|
||||
# scenario
|
||||
start_scenario_index=0,
|
||||
num_scenarios=40000,
|
||||
data_directory=os.path.join(SCENARIONET_DATASET_PATH, "nuplan_train"),
|
||||
sequential_seed=True,
|
||||
|
||||
# curriculum training
|
||||
curriculum_level=100,
|
||||
target_success_rate=0.8, # or 0.7
|
||||
# episodes_to_evaluate_curriculum=400, # default=num_scenarios/curriculum_level
|
||||
|
||||
# traffic & light
|
||||
reactive_traffic=True,
|
||||
no_static_vehicles=True,
|
||||
no_light=True,
|
||||
static_traffic_object=True,
|
||||
|
||||
# training scheme
|
||||
horizon=None,
|
||||
driving_reward=4,
|
||||
steering_range_penalty=1.0,
|
||||
heading_penalty=2,
|
||||
lateral_penalty=2.0,
|
||||
no_negative_reward=True,
|
||||
on_lane_line_penalty=0,
|
||||
crash_vehicle_penalty=2,
|
||||
crash_human_penalty=2,
|
||||
crash_object_penalty=0.5,
|
||||
# out_of_road_penalty=2,
|
||||
max_lateral_dist=2,
|
||||
# crash_vehicle_done=True,
|
||||
|
||||
vehicle_config=dict(side_detector=dict(num_lasers=0))
|
||||
|
||||
),
|
||||
|
||||
# ===== Evaluation =====
|
||||
evaluation_interval=15,
|
||||
evaluation_num_episodes=1000,
|
||||
# TODO (LQY), this is a sample from testset do eval on all scenarios after training!
|
||||
evaluation_config=dict(env_config=dict(start_scenario_index=0,
|
||||
num_scenarios=1000,
|
||||
sequential_seed=True,
|
||||
curriculum_level=1, # turn off
|
||||
data_directory=os.path.join(SCENARIONET_DATASET_PATH, "nuplan_test"))),
|
||||
evaluation_num_workers=10,
|
||||
metrics_smoothing_episodes=10,
|
||||
|
||||
# ===== Training =====
|
||||
model=dict(fcnet_hiddens=[512, 256, 128]),
|
||||
horizon=600,
|
||||
num_sgd_iter=20,
|
||||
lr=1e-4,
|
||||
rollout_fragment_length=500,
|
||||
sgd_minibatch_size=200,
|
||||
train_batch_size=50000,
|
||||
num_gpus=0.5,
|
||||
num_cpus_per_worker=0.3,
|
||||
num_cpus_for_driver=1,
|
||||
num_workers=20,
|
||||
framework="tf"
|
||||
)
|
||||
|
||||
if __name__ == '__main__':
|
||||
# PG data is generated with seeds 10,000 to 60,000
|
||||
args = get_train_parser().parse_args()
|
||||
exp_name = get_exp_name(args)
|
||||
stop = int(100_000_000)
|
||||
config["num_gpus"] = 0.5 if args.num_gpus != 0 else 0
|
||||
|
||||
train(
|
||||
MultiWorkerPPO,
|
||||
exp_name=exp_name,
|
||||
save_dir=os.path.join(SCENARIONET_REPO_PATH, "experiment"),
|
||||
keep_checkpoints_num=5,
|
||||
stop=stop,
|
||||
config=config,
|
||||
num_gpus=args.num_gpus,
|
||||
# num_seeds=args.num_seeds,
|
||||
num_seeds=5,
|
||||
test_mode=args.test,
|
||||
# local_mode=True,
|
||||
# TODO remove this when we release our code
|
||||
# wandb_key_file="~/wandb_api_key_file.txt",
|
||||
wandb_project="scenarionet",
|
||||
)
|
||||
Reference in New Issue
Block a user