* Update waymo.rst * Update waymo.rst * allow generate all data * update readme * update * better logging info * more info * up * fix * add note on GPU * better log * format
86 lines
3.4 KiB
Markdown
86 lines
3.4 KiB
Markdown
# ScenarioNet
|
|
|
|
[](https://scenarionet.readthedocs.io/en/latest/?badge=latest)
|
|
[](http://github.com/metadriverse/scenarionet/actions)
|
|
[](https://github.com/metadriverse/scenarionet/blob/main/LICENSE.txt)
|
|
|
|
**Open-Source Platform for Large-Scale Traffic Scenario Simulation and Modeling**
|
|
|
|
[
|
|
[**Webpage**](https://metadriverse.github.io/scenarionet/) |
|
|
[**Code**](https://github.com/metadriverse/scenarionet) |
|
|
[**Video**](https://youtu.be/3bOqswXP6OA) |
|
|
[**Paper**](http://arxiv.org/abs/2306.12241) |
|
|
[**Documentation**](https://scenarionet.readthedocs.io/en/latest/)
|
|
]
|
|
|
|
|
|
***Colab example for running simulation with ScenarioNet:***
|
|
[](https://colab.research.google.com/github/metadriverse/scenarionet/blob/main/tutorial/simulation.ipynb)
|
|
|
|
|
|
***Colab example for reading established ScenarioNet dataset:***
|
|
[](https://colab.research.google.com/github/metadriverse/scenarionet/blob/main/tutorial/read_established_scenarionet_dataset.ipynb)
|
|
|
|
|
|
|
|
|
|
ScenarioNet allows users to load scenarios from real-world datasets like Waymo, nuPlan,
|
|
nuScenes, l5 and synthetic dataset such as procedural generated ones and safety-critical
|
|
ones generated by adversarial attack. The built database provides tools for building
|
|
training and test sets for ML applications.
|
|
|
|
Powered by [MetaDrive Simulator](https://github.com/metadriverse/metadrive),
|
|
the scenarios can be reconstructed for various applications like AD stack test,
|
|
reinforcement learning, imitation learning, scenario generation and so on.
|
|
|
|

|
|
|
|
## Installation
|
|
|
|
The detailed installation guidance is available
|
|
at [documentation](https://scenarionet.readthedocs.io/en/latest/install.html).
|
|
A simplest way to do this is as follows.
|
|
|
|
```
|
|
# create environment
|
|
conda create -n scenarionet python=3.9
|
|
conda activate scenarionet
|
|
|
|
# Install MetaDrive Simulator
|
|
cd ~/ # Go to the folder you want to host these two repos.
|
|
git clone https://github.com/metadriverse/metadrive.git
|
|
cd metadrive
|
|
pip install -e.
|
|
|
|
# Install ScenarioNet
|
|
cd ~/ # Go to the folder you want to host these two repos.
|
|
git clone https://github.com/metadriverse/scenarionet.git
|
|
cd scenarionet
|
|
pip install -e .
|
|
```
|
|
|
|
## API reference
|
|
|
|
All operations and API reference is available at
|
|
our [documentation](https://scenarionet.readthedocs.io/en/latest/operations.html).
|
|
If you already have ScenarioNet installed, you can check all operations by `python -m scenarionet.list`.
|
|
|
|
## ScenarioNet dataset and Scenario Description
|
|
|
|
Please refer to the [Scenario Description section](https://metadrive-simulator.readthedocs.io/en/latest/scenario_description.html
|
|
) in MetaDrive documentation for a walk-through.
|
|
|
|
## Citation
|
|
|
|
If you used this project in your research, please cite:
|
|
|
|
```latex
|
|
@article{li2023scenarionet,
|
|
title={ScenarioNet: Open-Source Platform for Large-Scale Traffic Scenario Simulation and Modeling},
|
|
author={Li, Quanyi and Peng, Zhenghao and Feng, Lan and Liu, Zhizheng and Duan, Chenda and Mo, Wenjie and Zhou, Bolei},
|
|
journal={Advances in Neural Information Processing Systems},
|
|
year={2023}
|
|
}
|
|
```
|