53 lines
2.1 KiB
Python
53 lines
2.1 KiB
Python
import argparse
|
|
import os
|
|
|
|
from metadrive.envs.scenario_env import ScenarioEnv
|
|
from metadrive.policy.replay_policy import ReplayEgoCarPolicy
|
|
from metadrive.scenario.utils import get_number_of_scenarios
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--dataset_path", "-d", required=True, help="The path of the dataset")
|
|
parser.add_argument("--render", action="store_true", help="Enable 3D rendering")
|
|
parser.add_argument("--scenario_index", default=None, type=int, help="Specifying a scenario to run")
|
|
args = parser.parse_args()
|
|
|
|
dataset_path = os.path.abspath(args.dataset_path)
|
|
num_scenario = get_number_of_scenarios(dataset_path)
|
|
if args.scenario_index is not None:
|
|
assert args.scenario_index < num_scenario, \
|
|
"The specified scenario index exceeds the scenario range: {}!".format(num_scenario)
|
|
|
|
env = ScenarioEnv(
|
|
{
|
|
"use_render": args.render,
|
|
"agent_policy": ReplayEgoCarPolicy,
|
|
"manual_control": False,
|
|
"show_interface": True,
|
|
"show_logo": False,
|
|
"show_fps": False,
|
|
"num_scenarios": num_scenario,
|
|
"horizon": 1000,
|
|
"vehicle_config": dict(
|
|
show_navi_mark=False,
|
|
no_wheel_friction=True,
|
|
lidar=dict(num_lasers=120, distance=50, num_others=4),
|
|
lane_line_detector=dict(num_lasers=12, distance=50),
|
|
side_detector=dict(num_lasers=160, distance=50)
|
|
),
|
|
"data_directory": dataset_path,
|
|
}
|
|
)
|
|
for seed in range(num_scenario if args.scenario_index is not None else 1000000):
|
|
env.reset(force_seed=seed if args.scenario_index is not None else args.scenario_index)
|
|
for t in range(10000):
|
|
o, r, d, info = env.step([0, 0])
|
|
if env.config["use_render"]:
|
|
env.render(text={
|
|
"seed": env.engine.global_seed + env.config["start_scenario_index"],
|
|
})
|
|
|
|
if d and info["arrive_dest"]:
|
|
print("scenario:{}, success".format(env.engine.global_random_seed))
|
|
break
|