Files
scenarionet/README.md
2023-09-12 22:13:03 +01:00

63 lines
2.4 KiB
Markdown

# ScenarioNet
**Open-Source Platform for Large-Scale Traffic Scenario Simulation and Modeling** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/metadriverse/scenarionet/blob/main/tutorial/simulation.ipynb)
[
[**Webpage**](https://metadriverse.github.io/scenarionet/) |
[**Code**](https://github.com/metadriverse/scenarionet) |
[**Video**](https://youtu.be/3bOqswXP6OA) |
[**Paper**](http://arxiv.org/abs/2306.12241) |
[**Documentation**](https://scenarionet.readthedocs.io/en/latest/) |
[**Colab Example**](https://colab.research.google.com/github/metadriverse/scenarionet/blob/main/tutorial/simulation.ipynb)
]
ScenarioNet allows users to load scenarios from real-world dataset like Waymo, nuPlan, nuScenes, l5 and synthetic
dataset such as procedural generated ones and safety-critical ones generated by adversarial attack.
The built database provides tools for building training and test sets for ML applications.
Powered by [MetaDrive Simulator](https://github.com/metadriverse/metadrive), the scenarios can be reconstructed for
various applications like AD stack test, reinforcement learning, imitation learning, scenario generation and so on.
![system](docs/asset/system_01.png)
## Installation
The detailed installation guidance is available
at [documentation](https://scenarionet.readthedocs.io/en/latest/install.html).
A simplest way to do this is as follows.
```
# create environment
conda create -n scenarionet python=3.9
conda activate scenarionet
# Install MetaDrive Simulator
git clone git@github.com:metadriverse/metadrive.git
cd metadrive
pip install -e.
# Install ScenarioNet
git clone git@github.com:metadriverse/scenarionet.git
cd scenarionet
pip install -e .
```
## API reference
All operations and API reference is available at
our [documentation](https://scenarionet.readthedocs.io/en/latest/operations.html).
If you already have ScenarioNet installed, you can check all operations by `python -m scenarionet.list`.
## Citation
If you used this project in your research, please cite
```latex
@article{li2023scenarionet,
title={ScenarioNet: Open-Source Platform for Large-Scale Traffic Scenario Simulation and Modeling},
author={Li, Quanyi and Peng, Zhenghao and Feng, Lan and Duan, Chenda and Mo, Wenjie and Zhou, Bolei and others},
journal={arXiv preprint arXiv:2306.12241},
year={2023}
}
```