Files
scenarionet/scenarionet/verifier/utils.py
2023-05-08 16:55:45 +01:00

112 lines
4.2 KiB
Python

import logging
import multiprocessing
import os
import numpy as np
from scenarionet.verifier.error import ErrorDescription as ED
from scenarionet.verifier.error import ErrorFile as EF
logger = logging.getLogger(__name__)
import tqdm
from metadrive.envs.scenario_env import ScenarioEnv
from metadrive.policy.replay_policy import ReplayEgoCarPolicy
from metadrive.scenario.utils import get_number_of_scenarios
from functools import partial
# this global variable is for generating broken scenarios for testing
RANDOM_DROP = False
def set_random_drop(drop):
global RANDOM_DROP
RANDOM_DROP = drop
def verify_loading_into_metadrive(dataset_path, result_save_dir, steps_to_run=1000, num_workers=8):
assert os.path.isdir(result_save_dir), "result_save_dir must be a dir, get {}".format(result_save_dir)
os.makedirs(result_save_dir, exist_ok=True)
num_scenario = get_number_of_scenarios(dataset_path)
if num_scenario < num_workers:
# single process
logger.info("Use one worker, as num_scenario < num_workers:")
num_workers = 1
# prepare arguments
argument_list = []
func = partial(loading_wrapper, dataset_path=dataset_path, steps_to_run=steps_to_run)
num_scenario_each_worker = int(num_scenario // num_workers)
for i in range(num_workers):
if i == num_workers - 1:
scenario_num = num_scenario - num_scenario_each_worker * (num_workers - 1)
else:
scenario_num = num_scenario_each_worker
argument_list.append([i * num_scenario_each_worker, scenario_num])
# Run, workers and process result from worker
with multiprocessing.Pool(num_workers) as p:
all_result = list(p.imap(func, argument_list))
success = all([i[0] for i in all_result])
errors = []
for _, error in all_result:
errors += error
# logging
if success:
logger.info("All scenarios can be loaded successfully!")
else:
# save result
path = EF.dump(result_save_dir, errors, dataset_path)
logger.info(
"Fail to load all scenarios. Number of failed scenarios: {}. "
"See: {} more details! ".format(len(errors), path))
return success, errors
def loading_into_metadrive(start_scenario_index, num_scenario, dataset_path, steps_to_run, metadrive_config=None):
global RANDOM_DROP
logger.info(
"================ Begin Scenario Loading Verification for scenario {}-{} ================ \n".format(
start_scenario_index, num_scenario + start_scenario_index))
success = True
metadrive_config = metadrive_config or {}
metadrive_config.update({
"agent_policy": ReplayEgoCarPolicy,
"num_scenarios": num_scenario,
"horizon": 1000,
"start_scenario_index": start_scenario_index,
"no_static_vehicles": False,
"data_directory": dataset_path,
})
env = ScenarioEnv(metadrive_config)
logging.disable(logging.INFO)
error_msgs = []
desc = "Scenarios: {}-{}".format(start_scenario_index, start_scenario_index + num_scenario)
for scenario_index in tqdm.tqdm(range(start_scenario_index, start_scenario_index + num_scenario), desc=desc):
try:
env.reset(force_seed=scenario_index)
arrive = False
if RANDOM_DROP and np.random.rand() < 0.5:
raise ValueError("Random Drop")
for _ in range(steps_to_run):
o, r, d, info = env.step([0, 0])
if d and info["arrive_dest"]:
arrive = True
assert arrive, "Can not arrive destination"
except Exception as e:
file_name = env.engine.data_manager.summary_lookup[scenario_index]
file_path = os.path.join(dataset_path, env.engine.data_manager.mapping[file_name], file_name)
error_msg = ED.make(scenario_index, file_path, file_name, str(e))
error_msgs.append(error_msg)
success = False
# proceed to next scenario
continue
env.close()
return success, error_msgs
def loading_wrapper(arglist, dataset_path, steps_to_run):
assert len(arglist) == 2, "Too much arguments!"
return loading_into_metadrive(arglist[0], arglist[1], dataset_path=dataset_path, steps_to_run=steps_to_run)