* scenarionet training * wandb * train utils * fix callback * run PPO * use pg test * save path * use torch * add dependency * update ignore * update training * large model * use curriculum training * add time to exp name * storage_path * restore * update training * use my key * add log message * check seed * restore callback * restore call bacl * add log message * add logging message * restore ray1.4 * length 500 * ray 100 * wandb * use tf * more levels * add callback * 10 worker * show level * no env horizon * callback result level * more call back * add diffuculty * add mroen stat * mroe stat * show levels * add callback * new * ep len 600 * fix setup * fix stepup * fix to 3.8 * update setup * parallel worker! * new exp * add callback * lateral dist * pg dataset * evaluate * modify config * align config * train single RL * update training script * 100w eval * less eval to reveal * 2000 env eval * new trianing * eval 1000 * update eval * more workers * more worker * 20 worker * dataset to database * split tool! * split dataset * try fix * train 003 * fix mapping * fix test * add waymo tqdm * utils * fix bug * fix bug * waymo * int type * 8 worker read * disable * read file * add log message * check existence * dist 0 * int * check num * suprass warning * add filter API * filter * store map false * new * ablation * filter * fix * update filyter * reanme to from * random select * add overlapping checj * fix * new training sceheme * new reward * add waymo train script * waymo different config * copy raw data * fix bug * add tqdm * update readme * waymo * pg * max lateral dist 3 * pg * crash_done instead of penalty * no crash done * gpu * update eval script * steering range penalty * evaluate * finish pg * update setup * fix bug * test * fix * add on line * train nuplan * generate sensor * udpate training * static obj * multi worker eval * filx bug * use ray for testing * eval! * filter senario * id filter * fox bug * dist = 2 * filter * eval * eval ret * ok * update training pg * test before use * store data=False * collect figures * capture pic --------- Co-authored-by: Quanyi Li <quanyi@bolei-gpu02.cs.ucla.edu>
2.6 KiB
ScenarioNet
ScenarioNet: Scalable Traffic Scenario Management System for Autonomous Driving
Installation
git clone git@github.com:metadriverse/scenarionet.git
cd scenarionet
pip install -e .
Usage
We provide some explanation and demo for all scripts here.
You are encouraged to try them on your own, add -h or --help argument to know more details about these
scripts.
Convert
Waymo: the following script can convert Waymo tfrecord to Metadrive scenario description and store them at directory ./waymo
python -m scenarionet.convert_waymo -d waymo --raw_data_path /path/to/tfrecords --num_workers=16
nuPlan: the following script will convert nuPlan split containing .db files to Metadrive scenario description and store them at directory ./nuplan
python -m scenarionet.convert_nuplan -d nuplan -raw_data_path /path/to/.db files --num_workers=16
nuScenes: as nuScenes split can be read by specifying version like v1.0-mini and v1.0-training, the following script will convert all scenarios in that split
python -m scenarionet.convert_nuscenes -d nuscenes --version v1.0-mini --num_workers=16
PG: the following script can generate 10000 scenarios stored at directory ./pg
python -m scenarionet.scripts.convert_pg -d pg --num_workers=16 --num_scenarios=10000
Merge & move
For merging two or more database, use
python -m scenarionet.merge_database -d /destination/path --from /database1 /2 ...
As a database contains a path mapping, one should move database folder with the following script instead of cp
command.
Using --copy_raw_data will copy the raw scenario file into target directory and cancel the virtual mapping.
python -m scenarionet.copy_database --to /destination/path --from /source/path
Verify
The following scripts will check whether all scenarios exist or can be loaded into simulator. The missing or broken scenarios will be recorded and stored into the error file. Otherwise, no error file will be generated. With teh error file, one can build a new database excluding or including the broken or missing scenarios.
Existence check
python -m scenarionet.check_existence -d /database/to/check --error_file_path /error/file/path
Runnable check
python -m scenarionet.check_simulation -d /database/to/check --error_file_path /error/file/path
Generating new database
python -m scenarionet.generate_from_error_file -d /new/database/path --file /error/file/path
visualization
Visualizing the simulated scenario
python -m scenarionet.run_simulation -d /path/to/database --render --scenario_index