* scenarionet training * wandb * train utils * fix callback * run PPO * use pg test * save path * use torch * add dependency * update ignore * update training * large model * use curriculum training * add time to exp name * storage_path * restore * update training * use my key * add log message * check seed * restore callback * restore call bacl * add log message * add logging message * restore ray1.4 * length 500 * ray 100 * wandb * use tf * more levels * add callback * 10 worker * show level * no env horizon * callback result level * more call back * add diffuculty * add mroen stat * mroe stat * show levels * add callback * new * ep len 600 * fix setup * fix stepup * fix to 3.8 * update setup * parallel worker! * new exp * add callback * lateral dist * pg dataset * evaluate * modify config * align config * train single RL * update training script * 100w eval * less eval to reveal * 2000 env eval * new trianing * eval 1000 * update eval * more workers * more worker * 20 worker * dataset to database * split tool! * split dataset * try fix * train 003 * fix mapping * fix test * add waymo tqdm * utils * fix bug * fix bug * waymo * int type * 8 worker read * disable * read file * add log message * check existence * dist 0 * int * check num * suprass warning * add filter API * filter * store map false * new * ablation * filter * fix * update filyter * reanme to from * random select * add overlapping checj * fix * new training sceheme * new reward * add waymo train script * waymo different config * copy raw data * fix bug * add tqdm * update readme * waymo * pg * max lateral dist 3 * pg * crash_done instead of penalty * no crash done * gpu * update eval script * steering range penalty * evaluate * finish pg * update setup * fix bug * test * fix * add on line * train nuplan * generate sensor * udpate training * static obj * multi worker eval * filx bug * use ray for testing * eval! * filter senario * id filter * fox bug * dist = 2 * filter * eval * eval ret * ok * update training pg * test before use * store data=False * collect figures * capture pic --------- Co-authored-by: Quanyi Li <quanyi@bolei-gpu02.cs.ucla.edu>
149 lines
5.8 KiB
Python
149 lines
5.8 KiB
Python
import logging
|
|
import multiprocessing
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
from scenarionet.common_utils import read_scenario, read_dataset_summary
|
|
from scenarionet.verifier.error import ErrorDescription as ED
|
|
from scenarionet.verifier.error import ErrorFile as EF
|
|
|
|
logger = logging.getLogger(__name__)
|
|
import tqdm
|
|
from metadrive.envs.scenario_env import ScenarioEnv
|
|
from metadrive.scenario.scenario_description import ScenarioDescription as SD
|
|
from metadrive.policy.replay_policy import ReplayEgoCarPolicy
|
|
from metadrive.scenario.utils import get_number_of_scenarios
|
|
from functools import partial
|
|
|
|
# this global variable is for generating broken scenarios for testing
|
|
RANDOM_DROP = False
|
|
|
|
|
|
def set_random_drop(drop):
|
|
global RANDOM_DROP
|
|
RANDOM_DROP = drop
|
|
|
|
|
|
def verify_database(dataset_path, error_file_path, overwrite=False, num_workers=8, steps_to_run=1000):
|
|
global RANDOM_DROP
|
|
assert os.path.isdir(error_file_path), "error_file_path must be a dir, get {}".format(error_file_path)
|
|
os.makedirs(error_file_path, exist_ok=True)
|
|
error_file_name = EF.get_error_file_name(dataset_path)
|
|
if os.path.exists(os.path.join(error_file_path, error_file_name)) and not overwrite:
|
|
raise FileExistsError(
|
|
"An error_file already exists in result_save_directory. "
|
|
"Setting overwrite=True to cancel this alert"
|
|
)
|
|
num_scenario = get_number_of_scenarios(dataset_path)
|
|
if num_scenario < num_workers:
|
|
# single process
|
|
logger.info("Use one worker, as num_scenario < num_workers:")
|
|
num_workers = 1
|
|
|
|
# prepare arguments
|
|
argument_list = []
|
|
func = partial(loading_wrapper, dataset_path=dataset_path, steps_to_run=steps_to_run, random_drop=RANDOM_DROP)
|
|
|
|
num_scenario_each_worker = int(num_scenario // num_workers)
|
|
for i in range(num_workers):
|
|
if i == num_workers - 1:
|
|
scenario_num = num_scenario - num_scenario_each_worker * (num_workers - 1)
|
|
else:
|
|
scenario_num = num_scenario_each_worker
|
|
argument_list.append([i * num_scenario_each_worker, scenario_num])
|
|
|
|
# Run, workers and process result from worker
|
|
with multiprocessing.Pool(num_workers) as p:
|
|
all_result = list(p.imap(func, argument_list))
|
|
success = all([i[0] for i in all_result])
|
|
errors = []
|
|
for _, error in all_result:
|
|
errors += error
|
|
# logging
|
|
if success:
|
|
logger.info("All scenarios can be loaded successfully!")
|
|
else:
|
|
# save result
|
|
path = EF.dump(error_file_path, errors, dataset_path)
|
|
logger.info(
|
|
"Fail to load all scenarios. Number of failed scenarios: {}. "
|
|
"See: {} more details! ".format(len(errors), path)
|
|
)
|
|
return success, errors
|
|
|
|
|
|
def loading_into_metadrive(
|
|
start_scenario_index, num_scenario, dataset_path, steps_to_run, metadrive_config=None, random_drop=False
|
|
):
|
|
logger.info(
|
|
"================ Begin Scenario Loading Verification for scenario {}-{} ================ \n".format(
|
|
start_scenario_index, num_scenario + start_scenario_index
|
|
)
|
|
)
|
|
success = True
|
|
error_msgs = []
|
|
|
|
if steps_to_run == 0:
|
|
summary, scenarios, mapping = read_dataset_summary(dataset_path)
|
|
index_count = -1
|
|
for file_name in tqdm.tqdm(scenarios):
|
|
index_count += 1
|
|
try:
|
|
scenario = read_scenario(dataset_path, mapping, file_name)
|
|
SD.sanity_check(scenario)
|
|
if random_drop and np.random.rand() < 0.5:
|
|
raise ValueError("Random Drop")
|
|
except Exception as e:
|
|
file_path = os.path.join(dataset_path, mapping[file_name], file_name)
|
|
error_msg = ED.make(index_count, file_path, file_name, str(e))
|
|
error_msgs.append(error_msg)
|
|
success = False
|
|
# proceed to next scenario
|
|
continue
|
|
else:
|
|
metadrive_config = metadrive_config or {}
|
|
metadrive_config.update(
|
|
{
|
|
"agent_policy": ReplayEgoCarPolicy,
|
|
"num_scenarios": num_scenario,
|
|
"horizon": 1000,
|
|
"store_map": False,
|
|
"start_scenario_index": start_scenario_index,
|
|
"no_static_vehicles": False,
|
|
"data_directory": dataset_path,
|
|
}
|
|
)
|
|
env = ScenarioEnv(metadrive_config)
|
|
logging.disable(logging.INFO)
|
|
desc = "Scenarios: {}-{}".format(start_scenario_index, start_scenario_index + num_scenario)
|
|
for scenario_index in tqdm.tqdm(range(start_scenario_index, start_scenario_index + num_scenario), desc=desc):
|
|
try:
|
|
env.reset(force_seed=scenario_index)
|
|
arrive = False
|
|
if random_drop and np.random.rand() < 0.5:
|
|
raise ValueError("Random Drop")
|
|
for _ in range(steps_to_run):
|
|
o, r, d, info = env.step([0, 0])
|
|
if d and info["arrive_dest"]:
|
|
arrive = True
|
|
assert arrive, "Can not arrive destination"
|
|
except Exception as e:
|
|
file_name = env.engine.data_manager.summary_lookup[scenario_index]
|
|
file_path = os.path.join(dataset_path, env.engine.data_manager.mapping[file_name], file_name)
|
|
error_msg = ED.make(scenario_index, file_path, file_name, str(e))
|
|
error_msgs.append(error_msg)
|
|
success = False
|
|
# proceed to next scenario
|
|
continue
|
|
|
|
env.close()
|
|
return success, error_msgs
|
|
|
|
|
|
def loading_wrapper(arglist, dataset_path, steps_to_run, random_drop):
|
|
assert len(arglist) == 2, "Too much arguments!"
|
|
return loading_into_metadrive(
|
|
arglist[0], arglist[1], dataset_path=dataset_path, steps_to_run=steps_to_run, random_drop=random_drop
|
|
)
|