Files
scenarionet/scenarionet_training/scripts/train_waymo.py
Quanyi Li 64bf9811b9 Rebuttal (#15)
* pg+nuplan train

* Need map

* use gym wrapper

* use createGymWrapper

* doc

* use all scenarios!

* update 80000 scenario

* train script
2023-08-08 17:33:02 +01:00

97 lines
3.5 KiB
Python

import os.path
from metadrive.envs.gym_wrapper import createGymWrapper
from metadrive.envs.scenario_env import ScenarioEnv
from scenarionet import SCENARIONET_REPO_PATH, SCENARIONET_DATASET_PATH
from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO
from scenarionet_training.train_utils.utils import train, get_train_parser, get_exp_name
config = dict(
env=createGymWrapper(ScenarioEnv),
env_config=dict(
# scenario
start_scenario_index=0,
num_scenarios=40000,
data_directory=os.path.join(SCENARIONET_DATASET_PATH, "waymo_train"),
sequential_seed=True,
# curriculum training
curriculum_level=100,
target_success_rate=0.8,
# episodes_to_evaluate_curriculum=400, # default=num_scenarios/curriculum_level
# traffic & light
reactive_traffic=True,
no_static_vehicles=True,
no_light=True,
static_traffic_object=True,
# training scheme
horizon=None,
driving_reward=1,
steering_range_penalty=0,
heading_penalty=1,
lateral_penalty=1.0,
no_negative_reward=True,
on_lane_line_penalty=0,
crash_vehicle_penalty=2,
crash_human_penalty=2,
out_of_road_penalty=2,
max_lateral_dist=2,
# crash_vehicle_done=True,
vehicle_config=dict(side_detector=dict(num_lasers=0))
),
# ===== Evaluation =====
evaluation_interval=15,
evaluation_num_episodes=1000,
# TODO (LQY), this is a sample from testset do eval on all scenarios after training!
evaluation_config=dict(env_config=dict(start_scenario_index=0,
num_scenarios=1000,
sequential_seed=True,
curriculum_level=1, # turn off
data_directory=os.path.join(SCENARIONET_DATASET_PATH,
"waymo_test"))),
evaluation_num_workers=10,
metrics_smoothing_episodes=10,
# ===== Training =====
model=dict(fcnet_hiddens=[512, 256, 128]),
horizon=600,
num_sgd_iter=20,
lr=1e-4,
rollout_fragment_length=500,
sgd_minibatch_size=200,
train_batch_size=50000,
num_gpus=0.5,
num_cpus_per_worker=0.3,
num_cpus_for_driver=1,
num_workers=20,
framework="tf"
)
if __name__ == '__main__':
# PG data is generated with seeds 10,000 to 60,000
args = get_train_parser().parse_args()
exp_name = get_exp_name(args)
stop = int(100_000_000)
config["num_gpus"] = 0.5 if args.num_gpus != 0 else 0
train(
MultiWorkerPPO,
exp_name=exp_name,
save_dir=os.path.join(SCENARIONET_REPO_PATH, "experiment"),
keep_checkpoints_num=5,
stop=stop,
config=config,
num_gpus=args.num_gpus,
# num_seeds=args.num_seeds,
num_seeds=5,
test_mode=args.test,
# local_mode=True,
# TODO remove this when we release our code
# wandb_key_file="~/wandb_api_key_file.txt",
wandb_project="scenarionet",
)