Files
scenarionet/scenarionet_training/scripts/multi_worker_eval.py
Quanyi Li db50bca7fd Add come updates for Neurips paper (#4)
* scenarionet training

* wandb

* train utils

* fix callback

* run PPO

* use pg test

* save path

* use torch

* add dependency

* update ignore

* update training

* large model

* use curriculum training

* add time to exp name

* storage_path

* restore

* update training

* use my key

* add log message

* check seed

* restore callback

* restore call bacl

* add log message

* add logging message

* restore ray1.4

* length 500

* ray 100

* wandb

* use tf

* more levels

* add callback

* 10 worker

* show level

* no env horizon

* callback result level

* more call back

* add diffuculty

* add mroen stat

* mroe stat

* show levels

* add callback

* new

* ep len 600

* fix setup

* fix stepup

* fix to 3.8

* update setup

* parallel worker!

* new exp

* add callback

* lateral dist

* pg dataset

* evaluate

* modify config

* align config

* train single RL

* update training script

* 100w eval

* less eval to reveal

* 2000 env eval

* new trianing

* eval 1000

* update eval

* more workers

* more worker

* 20 worker

* dataset to database

* split tool!

* split dataset

* try fix

* train 003

* fix mapping

* fix test

* add waymo tqdm

* utils

* fix bug

* fix bug

* waymo

* int type

* 8 worker read

* disable

* read file

* add log message

* check existence

* dist 0

* int

* check num

* suprass warning

* add filter API

* filter

* store map false

* new

* ablation

* filter

* fix

* update filyter

* reanme to from

* random select

* add overlapping checj

* fix

* new training sceheme

* new reward

* add waymo train script

* waymo different config

* copy raw data

* fix bug

* add tqdm

* update readme

* waymo

* pg

* max lateral dist 3

* pg

* crash_done instead of penalty

* no crash done

* gpu

* update eval script

* steering range penalty

* evaluate

* finish pg

* update setup

* fix bug

* test

* fix

* add on line

* train nuplan

* generate sensor

* udpate training

* static obj

* multi worker eval

* filx bug

* use ray for testing

* eval!

* filter senario

* id filter

* fox bug

* dist = 2

* filter

* eval

* eval ret

* ok

* update training pg

* test before use

* store data=False

* collect figures

* capture pic

---------

Co-authored-by: Quanyi Li <quanyi@bolei-gpu02.cs.ucla.edu>
2023-06-10 18:56:33 +01:00

75 lines
2.8 KiB
Python

import argparse
import pickle
import json
import os
import numpy as np
from scenarionet_training.scripts.train_nuplan import config
from scenarionet_training.train_utils.callbacks import DrivingCallbacks
from scenarionet_training.train_utils.multi_worker_PPO import MultiWorkerPPO
from scenarionet_training.train_utils.utils import initialize_ray
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, np.int32):
return int(obj)
elif isinstance(obj, np.int64):
return int(obj)
return json.JSONEncoder.default(self, obj)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--start_index", type=int, default=0)
parser.add_argument("--ckpt_path", type=str, required=True)
parser.add_argument("--database_path", type=str, required=True)
parser.add_argument("--id", type=str, default="")
parser.add_argument("--num_scenarios", type=int, default=5000)
parser.add_argument("--num_workers", type=int, default=10)
parser.add_argument("--horizon", type=int, default=600)
parser.add_argument("--allowed_more_steps", type=int, default=50)
parser.add_argument("--max_lateral_dist", type=int, default=2.5)
parser.add_argument("--overwrite", action="store_true")
args = parser.parse_args()
file = "eval_{}_{}_{}".format(args.id, os.path.basename(args.ckpt_path), os.path.basename(args.database_path))
if os.path.exists(file) and not args.overwrite:
raise FileExistsError("Please remove {} or set --overwrite".format(file))
initialize_ray(test_mode=True, num_gpus=1)
config["callbacks"] = DrivingCallbacks
config["evaluation_num_workers"] = args.num_workers
config["evaluation_num_episodes"] = args.num_scenarios
config["metrics_smoothing_episodes"] = args.num_scenarios
config["custom_eval_function"] = None
config["num_workers"] = 0
config["evaluation_config"]["env_config"].update(dict(
start_scenario_index=args.start_index,
num_scenarios=args.num_scenarios,
sequential_seed=True,
store_map=False,
store_data=False,
allowed_more_steps=args.allowed_more_steps,
# no_map=True,
max_lateral_dist=args.max_lateral_dist,
curriculum_level=1, # disable curriculum
target_success_rate=1,
horizon=args.horizon,
episodes_to_evaluate_curriculum=args.num_scenarios,
data_directory=args.database_path,
use_render=False))
trainer = MultiWorkerPPO(config)
trainer.restore(args.ckpt_path)
ret = trainer._evaluate()["evaluation"]
with open(file + ".json", "w") as f:
json.dump(ret, f, cls=NumpyEncoder)
with open(file + ".pkl", "wb+") as f:
pickle.dump(ret, f)